voice-changer/server/voice_changer/MMVCv15/MMVCv15.py
2023-05-28 22:08:10 +09:00

354 lines
12 KiB
Python

import sys
import os
from voice_changer.utils.LoadModelParams import LoadModelParams
from voice_changer.utils.VoiceChangerModel import AudioInOut
if sys.platform.startswith("darwin"):
baseDir = [x for x in sys.path if x.endswith("Contents/MacOS")]
if len(baseDir) != 1:
print("baseDir should be only one ", baseDir)
sys.exit()
modulePath = os.path.join(baseDir[0], "MMVC_Client_v15", "python")
sys.path.append(modulePath)
else:
modulePath = os.path.join("MMVC_Client_v15", "python")
sys.path.append(modulePath)
from dataclasses import dataclass, asdict
import numpy as np
import torch
import onnxruntime
import pyworld as pw
from models import SynthesizerTrn # type:ignore
from voice_changer.MMVCv15.client_modules import (
convert_continuos_f0,
spectrogram_torch,
get_hparams_from_file,
load_checkpoint,
)
from Exceptions import NoModeLoadedException, ONNXInputArgumentException
providers = [
"OpenVINOExecutionProvider",
"CUDAExecutionProvider",
"DmlExecutionProvider",
"CPUExecutionProvider",
]
@dataclass
class MMVCv15Settings:
gpu: int = 0
srcId: int = 0
dstId: int = 101
f0Factor: float = 1.0
f0Detector: str = "dio" # dio or harvest
framework: str = "PyTorch" # PyTorch or ONNX
pyTorchModelFile: str = ""
onnxModelFile: str = ""
configFile: str = ""
# ↓mutableな物だけ列挙
intData = ["gpu", "srcId", "dstId"]
floatData = ["f0Factor"]
strData = ["framework", "f0Detector"]
class MMVCv15:
audio_buffer: AudioInOut | None = None
def __init__(self):
self.settings = MMVCv15Settings()
self.net_g = None
self.onnx_session = None
self.gpu_num = torch.cuda.device_count()
def loadModel(self, props: LoadModelParams):
params = props.params
self.settings.configFile = params["files"]["mmvcv15Config"]
self.hps = get_hparams_from_file(self.settings.configFile)
modelFile = params["files"]["mmvcv15Model"]
if modelFile.endswith(".onnx"):
self.settings.pyTorchModelFile = None
self.settings.onnxModelFile = modelFile
else:
self.settings.pyTorchModelFile = modelFile
self.settings.onnxModelFile = None
# PyTorchモデル生成
self.net_g = SynthesizerTrn(
spec_channels=self.hps.data.filter_length // 2 + 1,
segment_size=self.hps.train.segment_size // self.hps.data.hop_length,
inter_channels=self.hps.model.inter_channels,
hidden_channels=self.hps.model.hidden_channels,
upsample_rates=self.hps.model.upsample_rates,
upsample_initial_channel=self.hps.model.upsample_initial_channel,
upsample_kernel_sizes=self.hps.model.upsample_kernel_sizes,
n_flow=self.hps.model.n_flow,
dec_out_channels=1,
dec_kernel_size=7,
n_speakers=self.hps.data.n_speakers,
gin_channels=self.hps.model.gin_channels,
requires_grad_pe=self.hps.requires_grad.pe,
requires_grad_flow=self.hps.requires_grad.flow,
requires_grad_text_enc=self.hps.requires_grad.text_enc,
requires_grad_dec=self.hps.requires_grad.dec,
)
if self.settings.pyTorchModelFile is not None:
self.settings.framework = "PyTorch"
self.net_g.eval()
load_checkpoint(self.settings.pyTorchModelFile, self.net_g, None)
# ONNXモデル生成
self.onxx_input_length = 8192
if self.settings.onnxModelFile is not None:
self.settings.framework = "ONNX"
providers, options = self.getOnnxExecutionProvider()
self.onnx_session = onnxruntime.InferenceSession(
self.settings.onnxModelFile,
providers=providers,
provider_options=options,
)
inputs_info = self.onnx_session.get_inputs()
for i in inputs_info:
# print("ONNX INPUT SHAPE", i.name, i.shape)
if i.name == "sin":
self.onxx_input_length = i.shape[2]
return self.get_info()
def getOnnxExecutionProvider(self):
if self.settings.gpu >= 0:
return ["CUDAExecutionProvider"], [{"device_id": self.settings.gpu}]
elif "DmlExecutionProvider" in onnxruntime.get_available_providers():
return ["DmlExecutionProvider"], []
else:
return ["CPUExecutionProvider"], [
{
"intra_op_num_threads": 8,
"execution_mode": onnxruntime.ExecutionMode.ORT_PARALLEL,
"inter_op_num_threads": 8,
}
]
def isOnnx(self):
if self.settings.onnxModelFile is not None:
return True
else:
return False
def update_settings(self, key: str, val: int | float | str):
if key in self.settings.intData:
val = int(val)
setattr(self.settings, key, val)
if key == "gpu" and self.isOnnx():
providers, options = self.getOnnxExecutionProvider()
self.onnx_session = onnxruntime.InferenceSession(
self.settings.onnxModelFile,
providers=providers,
provider_options=options,
)
inputs_info = self.onnx_session.get_inputs()
for i in inputs_info:
if i.name == "sin":
self.onxx_input_length = i.shape[2]
elif key in self.settings.floatData:
setattr(self.settings, key, float(val))
elif key in self.settings.strData:
setattr(self.settings, key, str(val))
else:
return False
return True
def get_info(self):
data = asdict(self.settings)
data["onnxExecutionProviders"] = (
self.onnx_session.get_providers()
if self.settings.onnxModelFile != ""
and self.settings.onnxModelFile is not None
else []
)
files = ["configFile", "pyTorchModelFile", "onnxModelFile"]
for f in files:
if data[f] is not None and os.path.exists(data[f]):
data[f] = os.path.basename(data[f])
else:
data[f] = ""
return data
def get_processing_sampling_rate(self):
if hasattr(self, "hps") is False:
raise NoModeLoadedException("config")
return self.hps.data.sampling_rate
def _get_f0(self, detector: str, newData: AudioInOut):
audio_norm_np = newData.astype(np.float64)
if detector == "dio":
_f0, _time = pw.dio(
audio_norm_np, self.hps.data.sampling_rate, frame_period=5.5
)
f0 = pw.stonemask(audio_norm_np, _f0, _time, self.hps.data.sampling_rate)
else:
f0, t = pw.harvest(
audio_norm_np,
self.hps.data.sampling_rate,
frame_period=5.5,
f0_floor=71.0,
f0_ceil=1000.0,
)
f0 = convert_continuos_f0(
f0, int(audio_norm_np.shape[0] / self.hps.data.hop_length)
)
f0 = torch.from_numpy(f0.astype(np.float32))
return f0
def _get_spec(self, newData: AudioInOut):
audio = torch.FloatTensor(newData)
audio_norm = audio.unsqueeze(0) # unsqueeze
spec = spectrogram_torch(
audio_norm,
self.hps.data.filter_length,
self.hps.data.sampling_rate,
self.hps.data.hop_length,
self.hps.data.win_length,
center=False,
)
spec = torch.squeeze(spec, 0)
return spec
def generate_input(
self,
newData: AudioInOut,
inputSize: int,
crossfadeSize: int,
solaSearchFrame: int = 0,
):
newData = newData.astype(np.float32) / self.hps.data.max_wav_value
if self.audio_buffer is not None:
self.audio_buffer = np.concatenate(
[self.audio_buffer, newData], 0
) # 過去のデータに連結
else:
self.audio_buffer = newData
convertSize = inputSize + crossfadeSize + solaSearchFrame
# if convertSize < 8192:
# convertSize = 8192
if convertSize % self.hps.data.hop_length != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
convertSize = convertSize + (
self.hps.data.hop_length - (convertSize % self.hps.data.hop_length)
)
# ONNX は固定長
if self.settings.framework == "ONNX":
convertSize = self.onxx_input_length
convertOffset = -1 * convertSize
self.audio_buffer = self.audio_buffer[convertOffset:] # 変換対象の部分だけ抽出
f0 = self._get_f0(self.settings.f0Detector, self.audio_buffer) # torch
f0 = (f0 * self.settings.f0Factor).unsqueeze(0).unsqueeze(0)
spec = self._get_spec(self.audio_buffer) # torch
sid = torch.LongTensor([int(self.settings.srcId)])
return [spec, f0, sid]
def _onnx_inference(self, data):
if self.settings.onnxModelFile == "" and self.settings.onnxModelFile is None:
print("[Voice Changer] No ONNX session.")
raise NoModeLoadedException("ONNX")
spec, f0, sid_src = data
spec = spec.unsqueeze(0)
spec_lengths = torch.tensor([spec.size(2)])
sid_tgt1 = torch.LongTensor([self.settings.dstId])
sin, d = self.net_g.make_sin_d(f0)
(d0, d1, d2, d3) = d
audio1 = (
self.onnx_session.run(
["audio"],
{
"specs": spec.numpy(),
"lengths": spec_lengths.numpy(),
"sin": sin.numpy(),
"d0": d0.numpy(),
"d1": d1.numpy(),
"d2": d2.numpy(),
"d3": d3.numpy(),
"sid_src": sid_src.numpy(),
"sid_tgt": sid_tgt1.numpy(),
},
)[0][0, 0]
* self.hps.data.max_wav_value
)
return audio1
def _pyTorch_inference(self, data):
if (
self.settings.pyTorchModelFile == ""
or self.settings.pyTorchModelFile is None
):
print("[Voice Changer] No pyTorch session.")
raise NoModeLoadedException("pytorch")
if self.settings.gpu < 0 or self.gpu_num == 0:
dev = torch.device("cpu")
else:
dev = torch.device("cuda", index=self.settings.gpu)
with torch.no_grad():
spec, f0, sid_src = data
spec = spec.unsqueeze(0).to(dev)
spec_lengths = torch.tensor([spec.size(2)]).to(dev)
f0 = f0.to(dev)
sid_src = sid_src.to(dev)
sid_target = torch.LongTensor([self.settings.dstId]).to(dev)
audio1 = (
self.net_g.to(dev)
.voice_conversion(spec, spec_lengths, f0, sid_src, sid_target)[0, 0]
.data
* self.hps.data.max_wav_value
)
result = audio1.float().cpu().numpy()
return result
def inference(self, data):
try:
if self.isOnnx():
audio = self._onnx_inference(data)
else:
audio = self._pyTorch_inference(data)
return audio
except onnxruntime.capi.onnxruntime_pybind11_state.InvalidArgument as _e:
print(_e)
raise ONNXInputArgumentException()
def __del__(self):
del self.net_g
del self.onnx_session
remove_path = os.path.join("MMVC_Client_v15", "python")
sys.path = [x for x in sys.path if x.endswith(remove_path) is False]
for key in list(sys.modules):
val = sys.modules.get(key)
try:
file_path = val.__file__
if file_path.find(remove_path + os.path.sep) >= 0:
print("remove", key, file_path)
sys.modules.pop(key)
except: # type:ignore
pass