voice-changer/server/voice_changer/RVC/RVC.py
2023-04-18 11:53:44 +09:00

332 lines
13 KiB
Python

import sys
import os
import resampy
from voice_changer.RVC.ModelWrapper import ModelWrapper
from Exceptions import NoModeLoadedException
# avoiding parse arg error in RVC
sys.argv = ["MMVCServerSIO.py"]
if sys.platform.startswith('darwin'):
baseDir = [x for x in sys.path if x.endswith("Contents/MacOS")]
if len(baseDir) != 1:
print("baseDir should be only one ", baseDir)
sys.exit()
modulePath = os.path.join(baseDir[0], "RVC")
sys.path.append(modulePath)
else:
sys.path.append("RVC")
import io
from dataclasses import dataclass, asdict, field
from functools import reduce
import numpy as np
import torch
import onnxruntime
# onnxruntime.set_default_logger_severity(3)
from const import HUBERT_ONNX_MODEL_PATH, TMP_DIR
import pyworld as pw
from voice_changer.RVC.custom_vc_infer_pipeline import VC
from infer_pack.models import SynthesizerTrnMs256NSFsid
from fairseq import checkpoint_utils
providers = ['OpenVINOExecutionProvider', "CUDAExecutionProvider", "DmlExecutionProvider", "CPUExecutionProvider"]
@dataclass
class RVCSettings():
gpu: int = 0
dstId: int = 0
f0Detector: str = "dio" # dio or harvest
tran: int = 20
noiceScale: float = 0.3
predictF0: int = 0 # 0:False, 1:True
silentThreshold: float = 0.00001
extraConvertSize: int = 1024 * 32
clusterInferRatio: float = 0.1
framework: str = "PyTorch" # PyTorch or ONNX
pyTorchModelFile: str = ""
onnxModelFile: str = ""
configFile: str = ""
indexRatio: float = 0
rvcQuality: int = 0
modelSamplingRate: int = 48000
speakers: dict[str, int] = field(
default_factory=lambda: {}
)
# ↓mutableな物だけ列挙
intData = ["gpu", "dstId", "tran", "predictF0", "extraConvertSize", "rvcQuality", "modelSamplingRate"]
floatData = ["noiceScale", "silentThreshold", "indexRatio"]
strData = ["framework", "f0Detector"]
class RVC:
def __init__(self, params):
self.settings = RVCSettings()
self.net_g = None
self.onnx_session = None
self.gpu_num = torch.cuda.device_count()
self.prevVol = 0
self.params = params
self.mps_enabled: bool = getattr(torch.backends, "mps", None) is not None and torch.backends.mps.is_available()
print("RVC initialization: ", params)
print("mps: ", self.mps_enabled)
def loadModel(self, props):
self.settings.configFile = props["files"]["configFilename"]
self.settings.pyTorchModelFile = props["files"]["pyTorchModelFilename"]
self.settings.onnxModelFile = props["files"]["onnxModelFilename"]
self.feature_file = props["files"]["featureFilename"]
self.index_file = props["files"]["indexFilename"]
self.is_half = props["isHalf"]
self.slot = props["slot"]
print("[Voice Changer] RVC loading... slot:", self.slot)
try:
hubert_path = self.params["hubert"]
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task([hubert_path], suffix="",)
model = models[0]
model.eval()
if self.is_half:
model = model.half()
self.hubert_model = model
except Exception as e:
print("EXCEPTION during loading hubert/contentvec model", e)
# if pyTorch_model_file != None:
# self.settings.pyTorchModelFile = pyTorch_model_file
# if onnx_model_file:
# self.settings.onnxModelFile = onnx_model_file
# PyTorchモデル生成
if self.settings.pyTorchModelFile != None:
cpt = torch.load(self.settings.pyTorchModelFile, map_location="cpu")
self.settings.modelSamplingRate = cpt["config"][-1]
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=self.is_half)
net_g.eval()
net_g.load_state_dict(cpt["weight"], strict=False)
if self.is_half:
net_g = net_g.half()
self.net_g = net_g
# ONNXモデル生成
if self.settings.onnxModelFile != None:
self.onnx_session = ModelWrapper(self.settings.onnxModelFile)
return self.get_info()
def update_settings(self, key: str, val: any):
if key == "onnxExecutionProvider" and self.onnx_session != None:
if val == "CUDAExecutionProvider":
if self.settings.gpu < 0 or self.settings.gpu >= self.gpu_num:
self.settings.gpu = 0
provider_options = [{'device_id': self.settings.gpu}]
self.onnx_session.set_providers(providers=[val], provider_options=provider_options)
if hasattr(self, "hubert_onnx"):
self.hubert_onnx.set_providers(providers=[val], provider_options=provider_options)
else:
self.onnx_session.set_providers(providers=[val])
if hasattr(self, "hubert_onnx"):
self.hubert_onnx.set_providers(providers=[val])
elif key == "onnxExecutionProvider" and self.onnx_session == None:
print("Onnx is not enabled. Please load model.")
return False
elif key in self.settings.intData:
setattr(self.settings, key, int(val))
if key == "gpu" and val >= 0 and val < self.gpu_num and self.onnx_session != None:
providers = self.onnx_session.get_providers()
print("Providers:", providers)
if "CUDAExecutionProvider" in providers:
provider_options = [{'device_id': self.settings.gpu}]
self.onnx_session.set_providers(providers=["CUDAExecutionProvider"], provider_options=provider_options)
elif key in self.settings.floatData:
setattr(self.settings, key, float(val))
elif key in self.settings.strData:
setattr(self.settings, key, str(val))
else:
return False
return True
def get_info(self):
data = asdict(self.settings)
data["onnxExecutionProviders"] = self.onnx_session.get_providers() if self.onnx_session != None else []
files = ["configFile", "pyTorchModelFile", "onnxModelFile"]
for f in files:
if data[f] != None and os.path.exists(data[f]):
data[f] = os.path.basename(data[f])
else:
data[f] = ""
return data
def get_processing_sampling_rate(self):
return self.settings.modelSamplingRate
def generate_input(self, newData: any, inputSize: int, crossfadeSize: int, solaSearchFrame: int = 0):
newData = newData.astype(np.float32) / 32768.0
if hasattr(self, "audio_buffer"):
self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0) # 過去のデータに連結
else:
self.audio_buffer = newData
convertSize = inputSize + crossfadeSize + solaSearchFrame + self.settings.extraConvertSize
if convertSize % 128 != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
convertSize = convertSize + (128 - (convertSize % 128))
self.audio_buffer = self.audio_buffer[-1 * convertSize:] # 変換対象の部分だけ抽出
crop = self.audio_buffer[-1 * (inputSize + crossfadeSize):-1 * (crossfadeSize)] # 出力部分だけ切り出して音量を確認。(solaとの関係性について、現状は無考慮)
rms = np.sqrt(np.square(crop).mean(axis=0))
vol = max(rms, self.prevVol * 0.0)
self.prevVol = vol
return (self.audio_buffer, convertSize, vol)
def _onnx_inference(self, data):
if hasattr(self, "onnx_session") == False or self.onnx_session == None:
print("[Voice Changer] No onnx session.")
raise NoModeLoadedException("ONNX")
if self.settings.gpu < 0 or self.gpu_num == 0:
dev = torch.device("cpu")
else:
dev = torch.device("cuda", index=self.settings.gpu)
self.hubert_model = self.hubert_model.to(dev)
audio = data[0]
convertSize = data[1]
vol = data[2]
audio = resampy.resample(audio, self.settings.modelSamplingRate, 16000)
if vol < self.settings.silentThreshold:
return np.zeros(convertSize).astype(np.int16)
with torch.no_grad():
repeat = 3 if self.is_half else 1
repeat *= self.settings.rvcQuality # 0 or 3
vc = VC(self.settings.modelSamplingRate, dev, self.is_half, repeat)
sid = 0
times = [0, 0, 0]
f0_up_key = self.settings.tran
f0_method = self.settings.f0Detector
file_index = self.index_file if self.index_file != None else ""
file_big_npy = self.feature_file if self.feature_file != None else ""
index_rate = self.settings.indexRatio
if_f0 = 1
f0_file = None
audio_out = vc.pipeline(self.hubert_model, self.onnx_session, sid, audio, times, f0_up_key, f0_method,
file_index, file_big_npy, index_rate, if_f0, f0_file=f0_file)
result = audio_out * np.sqrt(vol)
return result
def _pyTorch_inference(self, data):
if hasattr(self, "net_g") == False or self.net_g == None:
print("[Voice Changer] No pyTorch session.")
raise NoModeLoadedException("pytorch")
if self.settings.gpu < 0 or (self.gpu_num == 0 and self.mps_enabled == False):
dev = torch.device("cpu")
elif self.mps_enabled:
dev = torch.device("mps")
else:
dev = torch.device("cuda", index=self.settings.gpu)
# print("device:", dev)
self.hubert_model = self.hubert_model.to(dev)
self.net_g = self.net_g.to(dev)
audio = data[0]
convertSize = data[1]
vol = data[2]
audio = resampy.resample(audio, self.settings.modelSamplingRate, 16000)
if vol < self.settings.silentThreshold:
return np.zeros(convertSize).astype(np.int16)
with torch.no_grad():
repeat = 3 if self.is_half else 1
repeat *= self.settings.rvcQuality # 0 or 3
vc = VC(self.settings.modelSamplingRate, dev, self.is_half, repeat)
sid = 0
times = [0, 0, 0]
f0_up_key = self.settings.tran
f0_method = "pm" if self.settings.f0Detector == "dio" else "harvest"
file_index = self.index_file if self.index_file != None else ""
file_big_npy = self.feature_file if self.feature_file != None else ""
index_rate = self.settings.indexRatio
if_f0 = 1
f0_file = None
audio_out = vc.pipeline(self.hubert_model, self.net_g, sid, audio, times, f0_up_key, f0_method,
file_index, file_big_npy, index_rate, if_f0, f0_file=f0_file)
result = audio_out * np.sqrt(vol)
return result
def inference(self, data):
if self.settings.framework == "ONNX":
audio = self._onnx_inference(data)
else:
audio = self._pyTorch_inference(data)
return audio
def __del__(self):
del self.net_g
del self.onnx_session
remove_path = os.path.join("RVC")
sys.path = [x for x in sys.path if x.endswith(remove_path) == False]
for key in list(sys.modules):
val = sys.modules.get(key)
try:
file_path = val.__file__
if file_path.find("RVC" + os.path.sep) >= 0:
print("remove", key, file_path)
sys.modules.pop(key)
except Exception as e:
pass
def export2onnx(self):
if hasattr(self, "net_g") == False or self.net_g == None:
print("[Voice Changer] export2onnx, No pyTorch session.")
return {"status": "ng", "path": f""}
if self.settings.pyTorchModelFile == None:
print("[Voice Changer] export2onnx, No pyTorch filepath.")
return {"status": "ng", "path": f""}
import voice_changer.RVC.export2onnx as onnxExporter
output_file = os.path.splitext(os.path.basename(self.settings.pyTorchModelFile))[0] + ".onnx"
output_file_simple = os.path.splitext(os.path.basename(self.settings.pyTorchModelFile))[0] + "_simple.onnx"
output_path = os.path.join(TMP_DIR, output_file)
output_path_simple = os.path.join(TMP_DIR, output_file_simple)
if torch.cuda.device_count() > 0:
onnxExporter.export2onnx(self.settings.pyTorchModelFile, output_path, output_path_simple, True)
else:
print("[Voice Changer] Warning!!! onnx export with float32. maybe size is doubled.")
onnxExporter.export2onnx(self.settings.pyTorchModelFile, output_path, output_path_simple, False)
return {"status": "ok", "path": f"/tmp/{output_file_simple}", "filename": output_file_simple}