voice-changer/server/voice_changer/DDSP_SVC/DDSP_SVC.py

187 lines
6.9 KiB
Python
Raw Normal View History

2023-03-24 02:56:15 +03:00
import sys
import os
2023-05-07 23:51:24 +03:00
from dataclasses import asdict
import numpy as np
import torch
2023-06-20 00:39:39 +03:00
from data.ModelSlot import DDSPSVCModelSlot
2023-05-08 12:02:15 +03:00
from voice_changer.DDSP_SVC.deviceManager.DeviceManager import DeviceManager
2023-08-05 06:33:31 +03:00
from voice_changer.VoiceChangerParamsManager import VoiceChangerParamsManager
2023-04-28 08:49:17 +03:00
if sys.platform.startswith("darwin"):
2023-03-24 02:56:15 +03:00
baseDir = [x for x in sys.path if x.endswith("Contents/MacOS")]
if len(baseDir) != 1:
print("baseDir should be only one ", baseDir)
sys.exit()
modulePath = os.path.join(baseDir[0], "DDSP-SVC")
sys.path.append(modulePath)
else:
sys.path.append("DDSP-SVC")
2023-06-22 04:46:12 +03:00
from .models.diffusion.infer_gt_mel import DiffGtMel
2023-04-17 03:45:12 +03:00
2023-05-07 23:51:24 +03:00
from voice_changer.utils.VoiceChangerModel import AudioInOut
from voice_changer.utils.VoiceChangerParams import VoiceChangerParams
from voice_changer.DDSP_SVC.DDSP_SVCSetting import DDSP_SVCSettings
from voice_changer.RVC.embedder.EmbedderManager import EmbedderManager
2023-05-08 12:02:15 +03:00
# from Exceptions import NoModeLoadedException
from voice_changer.DDSP_SVC.SvcDDSP import SvcDDSP
2023-03-24 02:56:15 +03:00
2023-05-07 23:51:24 +03:00
def phase_vocoder(a, b, fade_out, fade_in):
fa = torch.fft.rfft(a)
fb = torch.fft.rfft(b)
absab = torch.abs(fa) + torch.abs(fb)
n = a.shape[0]
if n % 2 == 0:
absab[1:-1] *= 2
else:
absab[1:] *= 2
phia = torch.angle(fa)
phib = torch.angle(fb)
deltaphase = phib - phia
deltaphase = deltaphase - 2 * np.pi * torch.floor(deltaphase / 2 / np.pi + 0.5)
w = 2 * np.pi * torch.arange(n // 2 + 1).to(a) + deltaphase
t = torch.arange(n).unsqueeze(-1).to(a) / n
2023-06-20 00:39:39 +03:00
result = a * (fade_out**2) + b * (fade_in**2) + torch.sum(absab * torch.cos(w * t + phia), -1) * fade_out * fade_in / n
2023-05-07 23:51:24 +03:00
return result
2023-03-24 02:56:15 +03:00
class DDSP_SVC:
2023-05-07 23:51:24 +03:00
initialLoad: bool = True
2023-05-08 12:02:15 +03:00
2023-06-22 04:46:12 +03:00
def __init__(self, params: VoiceChangerParams, slotInfo: DDSPSVCModelSlot):
print("[Voice Changer] [DDSP-SVC] Creating instance ")
self.deviceManager = DeviceManager.get_instance()
2023-03-24 02:56:15 +03:00
self.gpu_num = torch.cuda.device_count()
self.params = params
2023-06-22 04:46:12 +03:00
self.settings = DDSP_SVCSettings()
self.svc_model: SvcDDSP = SvcDDSP()
self.diff_model: DiffGtMel = DiffGtMel()
2023-05-07 23:51:24 +03:00
self.svc_model.setVCParams(params)
EmbedderManager.initialize(params)
2023-06-22 04:46:12 +03:00
self.audio_buffer: AudioInOut | None = None
self.prevVol = 0.0
self.slotInfo = slotInfo
self.initialize()
def initialize(self):
2023-05-08 12:02:15 +03:00
self.device = self.deviceManager.getDevice(self.settings.gpu)
2023-08-05 06:33:31 +03:00
vcparams = VoiceChangerParamsManager.get_instance().params
modelPath = os.path.join(vcparams.model_dir, str(self.slotInfo.slotIndex), "model", self.slotInfo.modelFile)
diffPath = os.path.join(vcparams.model_dir, str(self.slotInfo.slotIndex), "diff", self.slotInfo.diffModelFile)
2023-05-08 12:02:15 +03:00
self.svc_model = SvcDDSP()
self.svc_model.setVCParams(self.params)
2023-08-05 06:33:31 +03:00
self.svc_model.update_model(modelPath, self.device)
2023-05-08 12:02:15 +03:00
self.diff_model = DiffGtMel(device=self.device)
2023-08-05 06:33:31 +03:00
self.diff_model.flush_model(diffPath, ddsp_config=self.svc_model.args)
2023-03-24 02:56:15 +03:00
2023-05-08 12:02:15 +03:00
def update_settings(self, key: str, val: int | float | str):
if key in self.settings.intData:
val = int(val)
setattr(self.settings, key, val)
if key == "gpu":
2023-06-22 04:46:12 +03:00
self.initialize()
2023-05-08 12:02:15 +03:00
elif key in self.settings.floatData:
setattr(self.settings, key, float(val))
elif key in self.settings.strData:
setattr(self.settings, key, str(val))
else:
return False
2023-03-24 02:56:15 +03:00
return True
def get_info(self):
2023-05-08 12:02:15 +03:00
data = asdict(self.settings)
2023-03-24 02:56:15 +03:00
return data
def get_processing_sampling_rate(self):
2023-05-07 23:51:24 +03:00
return self.svc_model.args.data.sampling_rate
2023-03-24 02:56:15 +03:00
2023-04-28 08:49:17 +03:00
def generate_input(
self,
newData: AudioInOut,
inputSize: int,
crossfadeSize: int,
solaSearchFrame: int = 0,
):
2023-03-24 03:38:23 +03:00
newData = newData.astype(np.float32) / 32768.0
2023-05-07 23:51:24 +03:00
# newData = newData.astype(np.float32)
2023-03-24 02:56:15 +03:00
2023-04-28 08:49:17 +03:00
if self.audio_buffer is not None:
2023-06-20 00:39:39 +03:00
self.audio_buffer = np.concatenate([self.audio_buffer, newData], 0) # 過去のデータに連結
2023-03-24 02:56:15 +03:00
else:
self.audio_buffer = newData
2023-06-20 00:39:39 +03:00
convertSize = inputSize + crossfadeSize + solaSearchFrame + self.settings.extraConvertSize
2023-04-16 15:34:00 +03:00
2023-05-07 23:51:24 +03:00
# if convertSize % self.hop_size != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
# convertSize = convertSize + (self.hop_size - (convertSize % self.hop_size))
2023-03-24 02:56:15 +03:00
2023-04-28 08:49:17 +03:00
convertOffset = -1 * convertSize
self.audio_buffer = self.audio_buffer[convertOffset:] # 変換対象の部分だけ抽出
2023-05-08 12:02:15 +03:00
return (self.audio_buffer,)
2023-03-24 02:56:15 +03:00
2023-05-07 23:51:24 +03:00
# def _onnx_inference(self, data):
# if hasattr(self, "onnx_session") is False or self.onnx_session is None:
# print("[Voice Changer] No onnx session.")
# raise NoModeLoadedException("ONNX")
2023-03-24 02:56:15 +03:00
2023-05-07 23:51:24 +03:00
# raise NoModeLoadedException("ONNX")
2023-03-24 02:56:15 +03:00
def _pyTorch_inference(self, data):
2023-05-07 23:51:24 +03:00
input_wav = data[0]
_audio, _model_sr = self.svc_model.infer(
input_wav,
2023-05-08 12:02:15 +03:00
self.svc_model.args.data.sampling_rate,
2023-05-08 23:04:34 +03:00
spk_id=self.settings.dstId,
threhold=self.settings.threshold,
2023-05-08 12:02:15 +03:00
pitch_adjust=self.settings.tran,
2023-05-07 23:51:24 +03:00
use_spk_mix=False,
spk_mix_dict=None,
2023-05-08 23:04:34 +03:00
use_enhancer=True if self.settings.useEnhancer == 1 else False,
2023-05-08 12:02:15 +03:00
pitch_extractor_type=self.settings.f0Detector,
2023-05-07 23:51:24 +03:00
f0_min=50,
f0_max=1100,
2023-05-08 12:02:15 +03:00
# safe_prefix_pad_length=0, # TBD なにこれ?
2023-06-20 00:39:39 +03:00
safe_prefix_pad_length=self.settings.extraConvertSize / self.svc_model.args.data.sampling_rate,
2023-05-07 23:51:24 +03:00
diff_model=self.diff_model,
2023-05-08 23:04:34 +03:00
diff_acc=self.settings.diffAcc, # TBD なにこれ?
diff_spk_id=self.settings.diffSpkId,
diff_use=True if self.settings.useDiff == 1 else False,
2023-05-13 19:04:29 +03:00
# diff_use_dpm=True if self.settings.useDiffDpm == 1 else False, # TBD なにこれ?
method=self.settings.diffMethod,
2023-05-08 23:04:34 +03:00
k_step=self.settings.kStep, # TBD なにこれ?
2023-06-20 00:39:39 +03:00
diff_silence=True if self.settings.useDiffSilence == 1 else False, # TBD なにこれ?
2023-05-07 23:51:24 +03:00
)
return _audio.cpu().numpy() * 32768.0
2023-03-24 02:56:15 +03:00
def inference(self, data):
2023-06-22 04:46:12 +03:00
if self.slotInfo.isONNX:
2023-03-24 02:56:15 +03:00
audio = self._onnx_inference(data)
else:
audio = self._pyTorch_inference(data)
return audio
2023-04-10 18:21:17 +03:00
def __del__(self):
2023-04-16 15:34:00 +03:00
remove_path = os.path.join("DDSP-SVC")
2023-04-28 08:49:17 +03:00
sys.path = [x for x in sys.path if x.endswith(remove_path) is False]
2023-04-16 15:34:00 +03:00
for key in list(sys.modules):
val = sys.modules.get(key)
try:
file_path = val.__file__
if file_path.find("DDSP-SVC" + os.path.sep) >= 0:
2023-05-30 20:26:16 +03:00
# print("remove", key, file_path)
2023-04-16 15:34:00 +03:00
sys.modules.pop(key)
2023-08-05 06:33:31 +03:00
except: # type:ignore # noqa
2023-04-16 15:34:00 +03:00
pass
2023-08-05 06:33:31 +03:00
def get_model_current(self):
return [
]