voice-changer/server/voice_changer/RVC/custom_vc_infer_pipeline.py

146 lines
4.6 KiB
Python
Raw Normal View History

2023-04-28 10:42:37 +03:00
import numpy as np
2023-04-28 11:18:33 +03:00
# import parselmouth
2023-04-28 10:42:37 +03:00
import torch
import torch.nn.functional as F
2023-05-02 06:11:00 +03:00
from voice_changer.RVC.embedder.Embedder import Embedder
2023-05-02 16:29:28 +03:00
from voice_changer.RVC.inferencer.Inferencer import Inferencer
from voice_changer.RVC.pitchExtractor.PitchExtractor import PitchExtractor
2023-05-02 06:11:00 +03:00
2023-04-28 10:42:37 +03:00
class VC(object):
def __init__(self, tgt_sr, device, is_half, x_pad):
self.sr = 16000 # hubert输入采样率
self.window = 160 # 每帧点数
self.t_pad = self.sr * x_pad # 每条前后pad时间
self.t_pad_tgt = tgt_sr * x_pad
self.device = device
self.is_half = is_half
def pipeline(
self,
2023-05-02 06:11:00 +03:00
embedder: Embedder,
2023-05-02 16:29:28 +03:00
inferencer: Inferencer,
pitchExtractor: PitchExtractor,
2023-04-28 10:42:37 +03:00
sid,
audio,
f0_up_key,
f0_method,
index,
big_npy,
index_rate,
if_f0,
silence_front=0,
embChannels=256,
):
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
p_len = audio_pad.shape[0] // self.window
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
# ピッチ検出
pitch, pitchf = None, None
if if_f0 == 1:
2023-05-02 16:29:28 +03:00
pitch, pitchf = pitchExtractor.extract(
2023-04-28 10:42:37 +03:00
audio_pad,
f0_up_key,
2023-05-02 16:29:28 +03:00
self.sr,
self.window,
2023-04-28 10:42:37 +03:00
silence_front=silence_front,
)
pitch = pitch[:p_len]
pitchf = pitchf[:p_len]
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
pitchf = torch.tensor(
pitchf, device=self.device, dtype=torch.float
).unsqueeze(0)
# tensor
feats = torch.from_numpy(audio_pad)
if self.is_half is True:
feats = feats.half()
else:
feats = feats.float()
if feats.dim() == 2: # double channels
feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
feats = feats.view(1, -1)
# embedding
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
2023-05-02 06:11:00 +03:00
feats = embedder.extractFeatures(feats, embChannels)
2023-04-28 10:42:37 +03:00
# Index - feature抽出
if (
isinstance(index, type(None)) is False
and isinstance(big_npy, type(None)) is False
and index_rate != 0
):
npy = feats[0].cpu().numpy()
if self.is_half is True:
npy = npy.astype("float32")
D, I = index.search(npy, 1)
npy = big_npy[I.squeeze()]
if self.is_half is True:
npy = npy.astype("float16")
feats = (
torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
+ (1 - index_rate) * feats
)
#
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
# ピッチ抽出
p_len = audio_pad.shape[0] // self.window
if feats.shape[1] < p_len:
p_len = feats.shape[1]
if pitch is not None and pitchf is not None:
pitch = pitch[:, :p_len]
pitchf = pitchf[:, :p_len]
p_len = torch.tensor([p_len], device=self.device).long()
# 推論実行
with torch.no_grad():
if pitch is not None:
audio1 = (
2023-05-02 16:29:28 +03:00
(
inferencer.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0]
* 32768
)
2023-04-28 10:42:37 +03:00
.data.cpu()
.float()
.numpy()
.astype(np.int16)
)
else:
2023-05-02 16:29:28 +03:00
if hasattr(inferencer, "infer_pitchless"):
2023-04-28 10:42:37 +03:00
audio1 = (
2023-05-02 16:29:28 +03:00
(inferencer.infer_pitchless(feats, p_len, sid)[0][0, 0] * 32768)
2023-04-28 10:42:37 +03:00
.data.cpu()
.float()
.numpy()
.astype(np.int16)
)
else:
audio1 = (
2023-05-02 16:29:28 +03:00
(inferencer.infer(feats, p_len, sid)[0][0, 0] * 32768)
2023-04-28 10:42:37 +03:00
.data.cpu()
.float()
.numpy()
.astype(np.int16)
)
del feats, p_len, padding_mask
torch.cuda.empty_cache()
if self.t_pad_tgt != 0:
offset = self.t_pad_tgt
end = -1 * self.t_pad_tgt
audio1 = audio1[offset:end]
del pitch, pitchf, sid
torch.cuda.empty_cache()
return audio1