2023-01-08 11:58:27 +03:00
|
|
|
from const import ERROR_NO_ONNX_SESSION
|
2022-12-31 10:08:14 +03:00
|
|
|
import torch
|
2023-01-14 00:51:51 +03:00
|
|
|
import os, traceback
|
2022-12-31 10:08:14 +03:00
|
|
|
import numpy as np
|
2023-01-08 10:18:20 +03:00
|
|
|
from dataclasses import dataclass, asdict
|
2023-01-14 00:44:30 +03:00
|
|
|
|
|
|
|
import onnxruntime
|
|
|
|
|
|
|
|
from symbols import symbols
|
2022-12-31 10:08:14 +03:00
|
|
|
from models import SynthesizerTrn
|
|
|
|
|
2023-01-14 00:44:30 +03:00
|
|
|
from voice_changer.TrainerFunctions import TextAudioSpeakerCollate, spectrogram_torch, load_checkpoint, get_hparams_from_file
|
2022-12-31 10:08:14 +03:00
|
|
|
|
2023-01-07 18:25:21 +03:00
|
|
|
providers = ['OpenVINOExecutionProvider',"CUDAExecutionProvider","DmlExecutionProvider","CPUExecutionProvider"]
|
2022-12-31 10:08:14 +03:00
|
|
|
|
2023-01-08 10:18:20 +03:00
|
|
|
@dataclass
|
|
|
|
class VocieChangerSettings():
|
|
|
|
gpu:int = 0
|
|
|
|
srcId:int = 107
|
|
|
|
dstId:int = 100
|
|
|
|
crossFadeOffsetRate:float = 0.1
|
|
|
|
crossFadeEndRate:float = 0.9
|
2023-01-11 19:05:38 +03:00
|
|
|
crossFadeOverlapRate:float = 0.9
|
2023-01-08 10:18:20 +03:00
|
|
|
convertChunkNum:int = 32
|
2023-01-12 15:42:02 +03:00
|
|
|
minConvertSize:int = 0
|
2023-01-08 11:58:27 +03:00
|
|
|
framework:str = "PyTorch" # PyTorch or ONNX
|
2023-01-10 20:19:54 +03:00
|
|
|
pyTorchModelFile:str = ""
|
|
|
|
onnxModelFile:str = ""
|
|
|
|
configFile:str = ""
|
2023-01-08 10:18:20 +03:00
|
|
|
# ↓mutableな物だけ列挙
|
2023-01-12 15:42:02 +03:00
|
|
|
intData = ["gpu","srcId", "dstId", "convertChunkNum", "minConvertSize"]
|
2023-01-11 19:05:38 +03:00
|
|
|
floatData = [ "crossFadeOffsetRate", "crossFadeEndRate", "crossFadeOverlapRate"]
|
2023-01-08 10:18:20 +03:00
|
|
|
strData = ["framework"]
|
|
|
|
|
2022-12-31 10:08:14 +03:00
|
|
|
class VoiceChanger():
|
2023-01-08 10:18:20 +03:00
|
|
|
|
2023-01-08 15:56:39 +03:00
|
|
|
def __init__(self, config:str):
|
2023-01-08 10:18:20 +03:00
|
|
|
# 初期化
|
2023-01-10 20:19:54 +03:00
|
|
|
self.settings = VocieChangerSettings(configFile=config)
|
2023-01-08 10:18:20 +03:00
|
|
|
self.unpackedData_length=0
|
2023-01-10 16:49:16 +03:00
|
|
|
self.net_g = None
|
|
|
|
self.onnx_session = None
|
2023-01-10 18:59:09 +03:00
|
|
|
self.currentCrossFadeOffsetRate=0
|
|
|
|
self.currentCrossFadeEndRate=0
|
2023-01-11 19:05:38 +03:00
|
|
|
self.currentCrossFadeOverlapRate=0
|
|
|
|
|
2023-01-07 18:25:21 +03:00
|
|
|
# 共通で使用する情報を収集
|
2023-01-14 00:44:30 +03:00
|
|
|
# self.hps = utils.get_hparams_from_file(config)
|
|
|
|
self.hps = get_hparams_from_file(config)
|
2022-12-31 10:08:14 +03:00
|
|
|
self.gpu_num = torch.cuda.device_count()
|
|
|
|
|
2023-01-14 00:44:30 +03:00
|
|
|
# text_norm = text_to_sequence("a", self.hps.data.text_cleaners)
|
|
|
|
# print("text_norm1: ",text_norm)
|
|
|
|
# text_norm = commons.intersperse(text_norm, 0)
|
|
|
|
# print("text_norm2: ",text_norm)
|
|
|
|
# self.text_norm = torch.LongTensor(text_norm)
|
|
|
|
|
|
|
|
self.text_norm = torch.LongTensor([0, 6, 0])
|
2022-12-31 10:08:14 +03:00
|
|
|
self.audio_buffer = torch.zeros(1, 0)
|
|
|
|
self.prev_audio = np.zeros(1)
|
2023-01-07 18:25:21 +03:00
|
|
|
self.mps_enabled = getattr(torch.backends, "mps", None) is not None and torch.backends.mps.is_available()
|
2022-12-31 10:08:14 +03:00
|
|
|
|
2023-01-04 20:28:36 +03:00
|
|
|
print(f"VoiceChanger Initialized (GPU_NUM:{self.gpu_num}, mps_enabled:{self.mps_enabled})")
|
|
|
|
|
2023-01-08 15:56:39 +03:00
|
|
|
def loadModel(self, config:str, pyTorch_model_file:str=None, onnx_model_file:str=None):
|
2023-01-10 20:19:54 +03:00
|
|
|
self.settings.configFile = config
|
|
|
|
if pyTorch_model_file != None:
|
|
|
|
self.settings.pyTorchModelFile = pyTorch_model_file
|
|
|
|
if onnx_model_file:
|
|
|
|
self.settings.onnxModelFile = onnx_model_file
|
2023-01-08 15:56:39 +03:00
|
|
|
|
2023-01-07 18:25:21 +03:00
|
|
|
# PyTorchモデル生成
|
2023-01-08 10:18:20 +03:00
|
|
|
if pyTorch_model_file != None:
|
2023-01-07 18:25:21 +03:00
|
|
|
self.net_g = SynthesizerTrn(
|
|
|
|
len(symbols),
|
|
|
|
self.hps.data.filter_length // 2 + 1,
|
|
|
|
self.hps.train.segment_size // self.hps.data.hop_length,
|
|
|
|
n_speakers=self.hps.data.n_speakers,
|
|
|
|
**self.hps.model)
|
|
|
|
self.net_g.eval()
|
2023-01-14 00:44:30 +03:00
|
|
|
load_checkpoint(pyTorch_model_file, self.net_g, None)
|
|
|
|
# utils.load_checkpoint(pyTorch_model_file, self.net_g, None)
|
2023-01-07 18:25:21 +03:00
|
|
|
|
|
|
|
# ONNXモデル生成
|
2023-01-08 10:18:20 +03:00
|
|
|
if onnx_model_file != None:
|
2023-01-07 14:07:39 +03:00
|
|
|
ort_options = onnxruntime.SessionOptions()
|
|
|
|
ort_options.intra_op_num_threads = 8
|
|
|
|
self.onnx_session = onnxruntime.InferenceSession(
|
2023-01-08 10:18:20 +03:00
|
|
|
onnx_model_file,
|
2023-01-07 18:25:21 +03:00
|
|
|
providers=providers
|
2023-01-07 14:07:39 +03:00
|
|
|
)
|
2023-01-10 16:49:16 +03:00
|
|
|
return self.get_info()
|
2023-01-08 15:56:39 +03:00
|
|
|
|
2022-12-31 10:08:14 +03:00
|
|
|
def destroy(self):
|
2023-01-10 16:49:16 +03:00
|
|
|
del self.net_g
|
|
|
|
del self.onnx_session
|
2022-12-31 10:08:14 +03:00
|
|
|
|
2023-01-07 18:25:21 +03:00
|
|
|
def get_info(self):
|
2023-01-08 10:18:20 +03:00
|
|
|
data = asdict(self.settings)
|
2023-01-09 15:52:39 +03:00
|
|
|
|
2023-01-12 10:38:45 +03:00
|
|
|
data["onnxExecutionProvider"] = self.onnx_session.get_providers() if self.onnx_session != None else []
|
2023-01-10 20:19:54 +03:00
|
|
|
files = ["configFile", "pyTorchModelFile", "onnxModelFile"]
|
2023-01-08 10:18:20 +03:00
|
|
|
for f in files:
|
2023-01-10 20:19:54 +03:00
|
|
|
if data[f]!=None and os.path.exists(data[f]):
|
2023-01-08 14:28:57 +03:00
|
|
|
data[f] = os.path.basename(data[f])
|
|
|
|
else:
|
|
|
|
data[f] = ""
|
|
|
|
|
2023-01-08 10:18:20 +03:00
|
|
|
return data
|
|
|
|
|
|
|
|
def update_setteings(self, key:str, val:any):
|
2023-01-08 14:28:57 +03:00
|
|
|
if key == "onnxExecutionProvider" and self.onnx_session != None:
|
2023-01-08 11:58:27 +03:00
|
|
|
if val == "CUDAExecutionProvider":
|
2023-01-10 23:21:56 +03:00
|
|
|
if self.settings.gpu < 0 or self.settings.gpu >= self.gpu_num:
|
|
|
|
self.settings.gpu = 0
|
2023-01-08 11:58:27 +03:00
|
|
|
provider_options=[{'device_id': self.settings.gpu}]
|
|
|
|
self.onnx_session.set_providers(providers=[val], provider_options=provider_options)
|
|
|
|
else:
|
|
|
|
self.onnx_session.set_providers(providers=[val])
|
2023-01-08 10:18:20 +03:00
|
|
|
elif key in self.settings.intData:
|
|
|
|
setattr(self.settings, key, int(val))
|
2023-01-08 14:28:57 +03:00
|
|
|
if key == "gpu" and val >= 0 and val < self.gpu_num and self.onnx_session != None:
|
2023-01-08 11:58:27 +03:00
|
|
|
providers = self.onnx_session.get_providers()
|
2023-01-10 18:59:09 +03:00
|
|
|
print("Providers:", providers)
|
2023-01-08 11:58:27 +03:00
|
|
|
if "CUDAExecutionProvider" in providers:
|
|
|
|
provider_options=[{'device_id': self.settings.gpu}]
|
|
|
|
self.onnx_session.set_providers(providers=["CUDAExecutionProvider"], provider_options=provider_options)
|
2023-01-08 15:19:44 +03:00
|
|
|
if key == "crossFadeOffsetRate" or key == "crossFadeEndRate":
|
|
|
|
self.unpackedData_length = 0
|
2023-01-08 10:18:20 +03:00
|
|
|
elif key in self.settings.floatData:
|
|
|
|
setattr(self.settings, key, float(val))
|
|
|
|
elif key in self.settings.strData:
|
|
|
|
setattr(self.settings, key, str(val))
|
2023-01-08 03:45:58 +03:00
|
|
|
else:
|
2023-01-08 10:18:20 +03:00
|
|
|
print(f"{key} is not mutalbe variable!")
|
|
|
|
|
2023-01-10 18:59:09 +03:00
|
|
|
return self.get_info()
|
2023-01-08 10:18:20 +03:00
|
|
|
|
2023-01-04 20:28:36 +03:00
|
|
|
|
2023-01-08 10:18:20 +03:00
|
|
|
def _generate_strength(self, unpackedData):
|
2023-01-07 14:07:39 +03:00
|
|
|
|
2023-01-11 19:05:38 +03:00
|
|
|
if self.unpackedData_length != unpackedData.shape[0] or self.currentCrossFadeOffsetRate != self.settings.crossFadeOffsetRate or self.currentCrossFadeEndRate != self.settings.crossFadeEndRate or self.currentCrossFadeOverlapRate != self.settings.crossFadeOverlapRate:
|
2023-01-04 20:28:36 +03:00
|
|
|
self.unpackedData_length = unpackedData.shape[0]
|
2023-01-10 18:59:09 +03:00
|
|
|
self.currentCrossFadeOffsetRate = self.settings.crossFadeOffsetRate
|
|
|
|
self.currentCrossFadeEndRate = self.settings.crossFadeEndRate
|
2023-01-11 19:05:38 +03:00
|
|
|
self.currentCrossFadeOverlapRate = self.settings.crossFadeOverlapRate
|
|
|
|
|
|
|
|
overlapSize = int(unpackedData.shape[0] * self.settings.crossFadeOverlapRate)
|
|
|
|
|
|
|
|
cf_offset = int(overlapSize * self.settings.crossFadeOffsetRate)
|
|
|
|
cf_end = int(overlapSize * self.settings.crossFadeEndRate)
|
2023-01-04 20:28:36 +03:00
|
|
|
cf_range = cf_end - cf_offset
|
|
|
|
percent = np.arange(cf_range) / cf_range
|
|
|
|
|
|
|
|
np_prev_strength = np.cos(percent * 0.5 * np.pi) ** 2
|
|
|
|
np_cur_strength = np.cos((1-percent) * 0.5 * np.pi) ** 2
|
|
|
|
|
2023-01-11 19:05:38 +03:00
|
|
|
self.np_prev_strength = np.concatenate([np.ones(cf_offset), np_prev_strength, np.zeros(overlapSize - cf_offset - len(np_prev_strength))])
|
|
|
|
self.np_cur_strength = np.concatenate([np.zeros(cf_offset), np_cur_strength, np.ones(overlapSize - cf_offset - len(np_cur_strength))])
|
2023-01-04 20:28:36 +03:00
|
|
|
|
2023-01-07 14:07:39 +03:00
|
|
|
self.prev_strength = torch.FloatTensor(self.np_prev_strength)
|
|
|
|
self.cur_strength = torch.FloatTensor(self.np_cur_strength)
|
2023-01-04 20:28:36 +03:00
|
|
|
|
2023-01-08 10:18:20 +03:00
|
|
|
# torch.set_printoptions(edgeitems=2100)
|
2023-01-04 20:28:36 +03:00
|
|
|
print("Generated Strengths")
|
2023-01-05 16:08:26 +03:00
|
|
|
# print(f"cross fade: start:{cf_offset} end:{cf_end} range:{cf_range}")
|
|
|
|
# print(f"target_len:{unpackedData.shape[0]}, prev_len:{len(self.prev_strength)} cur_len:{len(self.cur_strength)}")
|
|
|
|
# print("Prev", self.prev_strength)
|
|
|
|
# print("Cur", self.cur_strength)
|
2023-01-04 20:28:36 +03:00
|
|
|
|
|
|
|
# ひとつ前の結果とサイズが変わるため、記録は消去する。
|
2023-01-05 15:51:06 +03:00
|
|
|
if hasattr(self, 'prev_audio1') == True:
|
|
|
|
delattr(self,"prev_audio1")
|
2023-01-04 20:28:36 +03:00
|
|
|
|
2023-01-08 10:18:20 +03:00
|
|
|
def _generate_input(self, unpackedData:any, convertSize:int):
|
2023-01-08 03:22:22 +03:00
|
|
|
# 今回変換するデータをテンソルとして整形する
|
|
|
|
audio = torch.FloatTensor(unpackedData.astype(np.float32)) # float32でtensorfを作成
|
|
|
|
audio_norm = audio / self.hps.data.max_wav_value # normalize
|
|
|
|
audio_norm = audio_norm.unsqueeze(0) # unsqueeze
|
|
|
|
self.audio_buffer = torch.cat([self.audio_buffer, audio_norm], axis=1) # 過去のデータに連結
|
|
|
|
audio_norm = self.audio_buffer[:, -convertSize:] # 変換対象の部分だけ抽出
|
|
|
|
self.audio_buffer = audio_norm
|
|
|
|
|
|
|
|
spec = spectrogram_torch(audio_norm, self.hps.data.filter_length,
|
|
|
|
self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length,
|
|
|
|
center=False)
|
|
|
|
spec = torch.squeeze(spec, 0)
|
2023-01-08 10:18:20 +03:00
|
|
|
sid = torch.LongTensor([int(self.settings.srcId)])
|
2023-01-08 03:22:22 +03:00
|
|
|
|
|
|
|
data = (self.text_norm, spec, audio_norm, sid)
|
|
|
|
data = TextAudioSpeakerCollate()([data])
|
|
|
|
return data
|
2023-01-04 20:28:36 +03:00
|
|
|
|
|
|
|
|
2023-01-08 11:58:27 +03:00
|
|
|
def _onnx_inference(self, data, inputSize):
|
2023-01-08 14:28:57 +03:00
|
|
|
if hasattr(self, "onnx_session") == False or self.onnx_session == None:
|
|
|
|
print("[Voice Changer] No ONNX session.")
|
|
|
|
return np.zeros(1).astype(np.int16)
|
|
|
|
|
|
|
|
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x for x in data]
|
|
|
|
sid_tgt1 = torch.LongTensor([self.settings.dstId])
|
|
|
|
# if spec.size()[2] >= 8:
|
|
|
|
audio1 = self.onnx_session.run(
|
|
|
|
["audio"],
|
|
|
|
{
|
|
|
|
"specs": spec.numpy(),
|
|
|
|
"lengths": spec_lengths.numpy(),
|
|
|
|
"sid_src": sid_src.numpy(),
|
|
|
|
"sid_tgt": sid_tgt1.numpy()
|
|
|
|
})[0][0,0] * self.hps.data.max_wav_value
|
|
|
|
if hasattr(self, 'np_prev_audio1') == True:
|
2023-01-11 19:05:38 +03:00
|
|
|
overlapSize = int(inputSize * self.settings.crossFadeOverlapRate)
|
|
|
|
prev_overlap = self.np_prev_audio1[-1*overlapSize:]
|
|
|
|
cur_overlap = audio1[-1*(inputSize + overlapSize) :-1*inputSize]
|
|
|
|
# print(prev_overlap.shape, self.np_prev_strength.shape, cur_overlap.shape, self.np_cur_strength.shape)
|
|
|
|
# print(">>>>>>>>>>>", -1*(inputSize + overlapSize) , -1*inputSize)
|
|
|
|
powered_prev = prev_overlap * self.np_prev_strength
|
|
|
|
powered_cur = cur_overlap * self.np_cur_strength
|
|
|
|
powered_result = powered_prev + powered_cur
|
|
|
|
|
|
|
|
cur = audio1[-1*inputSize:-1*overlapSize]
|
|
|
|
result = np.concatenate([powered_result, cur],axis=0)
|
2023-01-08 11:58:27 +03:00
|
|
|
else:
|
2023-01-11 19:05:38 +03:00
|
|
|
result = np.zeros(1).astype(np.int16)
|
2023-01-08 14:28:57 +03:00
|
|
|
self.np_prev_audio1 = audio1
|
|
|
|
return result
|
2023-01-08 11:58:27 +03:00
|
|
|
|
|
|
|
def _pyTorch_inference(self, data, inputSize):
|
2023-01-08 14:28:57 +03:00
|
|
|
if hasattr(self, "net_g") == False or self.net_g ==None:
|
|
|
|
print("[Voice Changer] No pyTorch session.")
|
|
|
|
return np.zeros(1).astype(np.int16)
|
|
|
|
|
2023-01-08 11:58:27 +03:00
|
|
|
if self.settings.gpu < 0 or self.gpu_num == 0:
|
|
|
|
with torch.no_grad():
|
|
|
|
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cpu() for x in data]
|
|
|
|
sid_tgt1 = torch.LongTensor([self.settings.dstId]).cpu()
|
2023-01-14 00:44:30 +03:00
|
|
|
audio1 = (self.net_g.cpu().voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0, 0].data * self.hps.data.max_wav_value)
|
2023-01-08 11:58:27 +03:00
|
|
|
|
|
|
|
if self.prev_strength.device != torch.device('cpu'):
|
|
|
|
print(f"prev_strength move from {self.prev_strength.device} to cpu")
|
|
|
|
self.prev_strength = self.prev_strength.cpu()
|
|
|
|
if self.cur_strength.device != torch.device('cpu'):
|
|
|
|
print(f"cur_strength move from {self.cur_strength.device} to cpu")
|
|
|
|
self.cur_strength = self.cur_strength.cpu()
|
|
|
|
|
2023-01-12 11:01:57 +03:00
|
|
|
if hasattr(self, 'prev_audio1') == True and self.prev_audio1.device == torch.device('cpu'): # prev_audio1が所望のデバイスに無い場合は一回休み。
|
|
|
|
overlapSize = int(inputSize * self.settings.crossFadeOverlapRate)
|
|
|
|
prev_overlap = self.prev_audio1[-1*overlapSize:]
|
|
|
|
cur_overlap = audio1[-1*(inputSize + overlapSize) :-1*inputSize]
|
|
|
|
powered_prev = prev_overlap * self.prev_strength
|
|
|
|
powered_cur = cur_overlap * self.cur_strength
|
|
|
|
powered_result = powered_prev + powered_cur
|
|
|
|
|
|
|
|
cur = audio1[-1*inputSize:-1*overlapSize] # 今回のインプットの生部分。(インプット - 次回のCrossfade部分)。
|
|
|
|
result = torch.cat([powered_result, cur],axis=0) # Crossfadeと今回のインプットの生部分を結合
|
|
|
|
|
2023-01-08 11:58:27 +03:00
|
|
|
else:
|
|
|
|
cur = audio1[-2*inputSize:-1*inputSize]
|
|
|
|
result = cur
|
|
|
|
|
|
|
|
self.prev_audio1 = audio1
|
|
|
|
result = result.cpu().float().numpy()
|
|
|
|
|
|
|
|
else:
|
|
|
|
with torch.no_grad():
|
|
|
|
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x.cuda(self.settings.gpu) for x in data]
|
|
|
|
sid_tgt1 = torch.LongTensor([self.settings.dstId]).cuda(self.settings.gpu)
|
2023-01-14 00:44:30 +03:00
|
|
|
audio1 = self.net_g.cuda(self.settings.gpu).voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt1)[0, 0].data * self.hps.data.max_wav_value
|
2023-01-08 11:58:27 +03:00
|
|
|
|
|
|
|
if self.prev_strength.device != torch.device('cuda', self.settings.gpu):
|
|
|
|
print(f"prev_strength move from {self.prev_strength.device} to gpu{self.settings.gpu}")
|
|
|
|
self.prev_strength = self.prev_strength.cuda(self.settings.gpu)
|
|
|
|
if self.cur_strength.device != torch.device('cuda', self.settings.gpu):
|
|
|
|
print(f"cur_strength move from {self.cur_strength.device} to gpu{self.settings.gpu}")
|
|
|
|
self.cur_strength = self.cur_strength.cuda(self.settings.gpu)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if hasattr(self, 'prev_audio1') == True and self.prev_audio1.device == torch.device('cuda', self.settings.gpu):
|
2023-01-12 11:01:57 +03:00
|
|
|
overlapSize = int(inputSize * self.settings.crossFadeOverlapRate)
|
|
|
|
prev_overlap = self.prev_audio1[-1*overlapSize:]
|
|
|
|
cur_overlap = audio1[-1*(inputSize + overlapSize) :-1*inputSize]
|
|
|
|
powered_prev = prev_overlap * self.prev_strength
|
|
|
|
powered_cur = cur_overlap * self.cur_strength
|
|
|
|
powered_result = powered_prev + powered_cur
|
|
|
|
|
|
|
|
cur = audio1[-1*inputSize:-1*overlapSize] # 今回のインプットの生部分。(インプット - 次回のCrossfade部分)。
|
|
|
|
result = torch.cat([powered_result, cur],axis=0) # Crossfadeと今回のインプットの生部分を結合
|
|
|
|
|
2023-01-08 11:58:27 +03:00
|
|
|
else:
|
|
|
|
cur = audio1[-2*inputSize:-1*inputSize]
|
|
|
|
result = cur
|
|
|
|
self.prev_audio1 = audio1
|
|
|
|
|
|
|
|
result = result.cpu().float().numpy()
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
2023-01-08 10:18:20 +03:00
|
|
|
def on_request(self, unpackedData:any):
|
|
|
|
convertSize = self.settings.convertChunkNum * 128 # 128sample/1chunk
|
2023-01-08 03:22:22 +03:00
|
|
|
|
2023-01-11 19:05:38 +03:00
|
|
|
if unpackedData.shape[0]*(1 + self.settings.crossFadeOverlapRate) + 1024 > convertSize:
|
|
|
|
convertSize = int(unpackedData.shape[0]*(1 + self.settings.crossFadeOverlapRate)) + 1024
|
2023-01-12 15:42:02 +03:00
|
|
|
if convertSize < self.settings.minConvertSize:
|
|
|
|
convertSize = self.settings.minConvertSize
|
|
|
|
# print("convert Size", unpackedData.shape[0], unpackedData.shape[0]*(1 + self.settings.crossFadeOverlapRate), convertSize, self.settings.minConvertSize)
|
2023-01-08 03:22:22 +03:00
|
|
|
|
2023-01-08 10:18:20 +03:00
|
|
|
self._generate_strength(unpackedData)
|
|
|
|
data = self._generate_input(unpackedData, convertSize)
|
|
|
|
|
2023-01-08 11:58:27 +03:00
|
|
|
|
|
|
|
try:
|
|
|
|
if self.settings.framework == "ONNX":
|
|
|
|
result = self._onnx_inference(data, unpackedData.shape[0])
|
|
|
|
else:
|
|
|
|
result = self._pyTorch_inference(data, unpackedData.shape[0])
|
|
|
|
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
print("VC PROCESSING!!!! EXCEPTION!!!", e)
|
|
|
|
print(traceback.format_exc())
|
2023-01-08 14:28:57 +03:00
|
|
|
if hasattr(self, "np_prev_audio1"):
|
|
|
|
del self.np_prev_audio1
|
|
|
|
if hasattr(self, "prev_audio1"):
|
|
|
|
del self.prev_audio1
|
|
|
|
return np.zeros(1).astype(np.int16)
|
2023-01-08 11:58:27 +03:00
|
|
|
|
|
|
|
result = result.astype(np.int16)
|
|
|
|
# print("on_request result size:",result.shape)
|
|
|
|
return result
|
2023-01-04 20:28:36 +03:00
|
|
|
|