2023-02-14 23:02:51 +03:00
|
|
|
from const import ERROR_NO_ONNX_SESSION, TMP_DIR
|
2022-12-31 10:08:14 +03:00
|
|
|
import torch
|
2023-01-28 09:56:56 +03:00
|
|
|
import os
|
|
|
|
import traceback
|
2022-12-31 10:08:14 +03:00
|
|
|
import numpy as np
|
2023-01-08 10:18:20 +03:00
|
|
|
from dataclasses import dataclass, asdict
|
2023-01-14 00:44:30 +03:00
|
|
|
|
|
|
|
import onnxruntime
|
|
|
|
|
|
|
|
from symbols import symbols
|
2022-12-31 10:08:14 +03:00
|
|
|
from models import SynthesizerTrn
|
|
|
|
|
2023-02-10 18:59:44 +03:00
|
|
|
import pyworld as pw
|
|
|
|
|
|
|
|
# from voice_changer.TrainerFunctions import TextAudioSpeakerCollate, spectrogram_torch, load_checkpoint, get_hparams_from_file
|
|
|
|
|
|
|
|
from voice_changer.client_modules import convert_continuos_f0, spectrogram_torch, TextAudioSpeakerCollate, get_hparams_from_file, load_checkpoint
|
|
|
|
|
2022-12-31 10:08:14 +03:00
|
|
|
|
2023-01-28 09:56:56 +03:00
|
|
|
providers = ['OpenVINOExecutionProvider', "CUDAExecutionProvider", "DmlExecutionProvider", "CPUExecutionProvider"]
|
|
|
|
|
2022-12-31 10:08:14 +03:00
|
|
|
|
2023-02-12 06:25:57 +03:00
|
|
|
import wave
|
|
|
|
|
2023-02-15 01:18:05 +03:00
|
|
|
import matplotlib
|
|
|
|
matplotlib.use('Agg')
|
|
|
|
import pylab
|
|
|
|
import librosa
|
|
|
|
import librosa.display
|
|
|
|
SAMPLING_RATE = 24000
|
|
|
|
|
2023-02-12 06:25:57 +03:00
|
|
|
|
|
|
|
class MockStream:
|
|
|
|
"""
|
|
|
|
オーディオストリーミング入出力をファイル入出力にそのまま置き換えるためのモック
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, sampling_rate):
|
|
|
|
self.sampling_rate = sampling_rate
|
|
|
|
self.start_count = 2
|
|
|
|
self.end_count = 2
|
|
|
|
self.fr = None
|
|
|
|
self.fw = None
|
|
|
|
|
|
|
|
def open_inputfile(self, input_filename):
|
|
|
|
self.fr = wave.open(input_filename, 'rb')
|
|
|
|
|
|
|
|
def open_outputfile(self, output_filename):
|
|
|
|
self.fw = wave.open(output_filename, 'wb')
|
|
|
|
self.fw.setnchannels(1)
|
|
|
|
self.fw.setsampwidth(2)
|
|
|
|
self.fw.setframerate(self.sampling_rate)
|
|
|
|
|
|
|
|
def read(self, length, exception_on_overflow=False):
|
|
|
|
if self.start_count > 0:
|
|
|
|
wav = bytes(length * 2)
|
|
|
|
self.start_count -= 1 # 最初の2回はダミーの空データ送る
|
|
|
|
else:
|
|
|
|
wav = self.fr.readframes(length)
|
|
|
|
if len(wav) <= 0: # データなくなってから最後の2回はダミーの空データを送る
|
|
|
|
wav = bytes(length * 2)
|
|
|
|
self.end_count -= 1
|
|
|
|
if self.end_count < 0:
|
|
|
|
Hyperparameters.VC_END_FLAG = True
|
|
|
|
return wav
|
|
|
|
|
|
|
|
def write(self, wav):
|
|
|
|
self.fw.writeframes(wav)
|
|
|
|
|
|
|
|
def stop_stream(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def close(self):
|
|
|
|
if self.fr != None:
|
|
|
|
self.fr.close()
|
|
|
|
self.fr = None
|
|
|
|
if self.fw != None:
|
|
|
|
self.fw.close()
|
|
|
|
self.fw = None
|
|
|
|
|
|
|
|
|
2023-01-08 10:18:20 +03:00
|
|
|
@dataclass
|
|
|
|
class VocieChangerSettings():
|
2023-01-28 09:56:56 +03:00
|
|
|
gpu: int = 0
|
|
|
|
srcId: int = 107
|
|
|
|
dstId: int = 100
|
|
|
|
crossFadeOffsetRate: float = 0.1
|
|
|
|
crossFadeEndRate: float = 0.9
|
|
|
|
crossFadeOverlapRate: float = 0.9
|
|
|
|
convertChunkNum: int = 32
|
|
|
|
minConvertSize: int = 0
|
2023-02-12 16:14:34 +03:00
|
|
|
framework: str = "PyTorch" # PyTorch or ONNX
|
2023-02-10 18:59:44 +03:00
|
|
|
f0Factor: float = 1.0
|
2023-02-14 23:02:51 +03:00
|
|
|
f0Detector: str = "dio" # dio or harvest
|
|
|
|
recordIO: int = 1 # 0:off, 1:on
|
2023-02-10 18:59:44 +03:00
|
|
|
|
2023-01-28 09:56:56 +03:00
|
|
|
pyTorchModelFile: str = ""
|
|
|
|
onnxModelFile: str = ""
|
|
|
|
configFile: str = ""
|
2023-02-10 18:59:44 +03:00
|
|
|
|
2023-01-08 10:18:20 +03:00
|
|
|
# ↓mutableな物だけ列挙
|
2023-02-14 23:02:51 +03:00
|
|
|
intData = ["gpu", "srcId", "dstId", "convertChunkNum", "minConvertSize", "recordIO"]
|
2023-02-10 18:59:44 +03:00
|
|
|
floatData = ["crossFadeOffsetRate", "crossFadeEndRate", "crossFadeOverlapRate", "f0Factor"]
|
2023-02-14 23:02:51 +03:00
|
|
|
strData = ["framework", "f0Detector"]
|
2023-01-08 10:18:20 +03:00
|
|
|
|
2023-01-28 09:56:56 +03:00
|
|
|
|
2022-12-31 10:08:14 +03:00
|
|
|
class VoiceChanger():
|
2023-01-08 10:18:20 +03:00
|
|
|
|
2023-01-29 03:42:45 +03:00
|
|
|
def __init__(self):
|
2023-01-08 10:18:20 +03:00
|
|
|
# 初期化
|
2023-01-29 03:42:45 +03:00
|
|
|
self.settings = VocieChangerSettings()
|
2023-01-28 09:56:56 +03:00
|
|
|
self.unpackedData_length = 0
|
2023-01-10 16:49:16 +03:00
|
|
|
self.net_g = None
|
|
|
|
self.onnx_session = None
|
2023-01-28 09:56:56 +03:00
|
|
|
self.currentCrossFadeOffsetRate = 0
|
|
|
|
self.currentCrossFadeEndRate = 0
|
|
|
|
self.currentCrossFadeOverlapRate = 0
|
|
|
|
|
2022-12-31 10:08:14 +03:00
|
|
|
self.gpu_num = torch.cuda.device_count()
|
2023-01-28 09:56:56 +03:00
|
|
|
self.text_norm = torch.LongTensor([0, 6, 0])
|
2022-12-31 10:08:14 +03:00
|
|
|
self.audio_buffer = torch.zeros(1, 0)
|
|
|
|
self.prev_audio = np.zeros(1)
|
2023-01-07 18:25:21 +03:00
|
|
|
self.mps_enabled = getattr(torch.backends, "mps", None) is not None and torch.backends.mps.is_available()
|
2022-12-31 10:08:14 +03:00
|
|
|
|
2023-02-14 23:02:51 +03:00
|
|
|
self._setupRecordIO()
|
2023-02-12 06:25:57 +03:00
|
|
|
|
2023-01-04 20:28:36 +03:00
|
|
|
print(f"VoiceChanger Initialized (GPU_NUM:{self.gpu_num}, mps_enabled:{self.mps_enabled})")
|
|
|
|
|
2023-02-14 23:02:51 +03:00
|
|
|
def _setupRecordIO(self):
|
|
|
|
# IO Recorder Setup
|
|
|
|
mock_stream_out = MockStream(24000)
|
|
|
|
stream_output_file = os.path.join(TMP_DIR, "out.wav")
|
|
|
|
if os.path.exists(stream_output_file):
|
|
|
|
os.unlink(stream_output_file)
|
|
|
|
mock_stream_out.open_outputfile(stream_output_file)
|
|
|
|
self.stream_out = mock_stream_out
|
|
|
|
|
|
|
|
mock_stream_in = MockStream(24000)
|
|
|
|
stream_input_file = os.path.join(TMP_DIR, "in.wav")
|
|
|
|
if os.path.exists(stream_input_file):
|
|
|
|
os.unlink(stream_input_file)
|
|
|
|
mock_stream_in.open_outputfile(stream_input_file)
|
|
|
|
self.stream_in = mock_stream_in
|
|
|
|
|
2023-01-28 09:56:56 +03:00
|
|
|
def loadModel(self, config: str, pyTorch_model_file: str = None, onnx_model_file: str = None):
|
2023-01-10 20:19:54 +03:00
|
|
|
self.settings.configFile = config
|
2023-01-29 03:42:45 +03:00
|
|
|
self.hps = get_hparams_from_file(config)
|
2023-01-10 20:19:54 +03:00
|
|
|
if pyTorch_model_file != None:
|
|
|
|
self.settings.pyTorchModelFile = pyTorch_model_file
|
|
|
|
if onnx_model_file:
|
|
|
|
self.settings.onnxModelFile = onnx_model_file
|
2023-01-28 09:56:56 +03:00
|
|
|
|
2023-01-07 18:25:21 +03:00
|
|
|
# PyTorchモデル生成
|
2023-01-08 10:18:20 +03:00
|
|
|
if pyTorch_model_file != None:
|
2023-01-07 18:25:21 +03:00
|
|
|
self.net_g = SynthesizerTrn(
|
2023-02-10 18:59:44 +03:00
|
|
|
spec_channels=self.hps.data.filter_length // 2 + 1,
|
|
|
|
segment_size=self.hps.train.segment_size // self.hps.data.hop_length,
|
|
|
|
inter_channels=self.hps.model.inter_channels,
|
|
|
|
hidden_channels=self.hps.model.hidden_channels,
|
|
|
|
upsample_rates=self.hps.model.upsample_rates,
|
|
|
|
upsample_initial_channel=self.hps.model.upsample_initial_channel,
|
|
|
|
upsample_kernel_sizes=self.hps.model.upsample_kernel_sizes,
|
|
|
|
n_flow=self.hps.model.n_flow,
|
|
|
|
dec_out_channels=1,
|
|
|
|
dec_kernel_size=7,
|
2023-01-07 18:25:21 +03:00
|
|
|
n_speakers=self.hps.data.n_speakers,
|
2023-02-10 18:59:44 +03:00
|
|
|
gin_channels=self.hps.model.gin_channels,
|
|
|
|
requires_grad_pe=self.hps.requires_grad.pe,
|
|
|
|
requires_grad_flow=self.hps.requires_grad.flow,
|
|
|
|
requires_grad_text_enc=self.hps.requires_grad.text_enc,
|
|
|
|
requires_grad_dec=self.hps.requires_grad.dec
|
|
|
|
)
|
2023-01-07 18:25:21 +03:00
|
|
|
self.net_g.eval()
|
2023-01-14 00:44:30 +03:00
|
|
|
load_checkpoint(pyTorch_model_file, self.net_g, None)
|
|
|
|
# utils.load_checkpoint(pyTorch_model_file, self.net_g, None)
|
2023-01-07 18:25:21 +03:00
|
|
|
|
|
|
|
# ONNXモデル生成
|
2023-01-08 10:18:20 +03:00
|
|
|
if onnx_model_file != None:
|
2023-01-07 14:07:39 +03:00
|
|
|
ort_options = onnxruntime.SessionOptions()
|
|
|
|
ort_options.intra_op_num_threads = 8
|
|
|
|
self.onnx_session = onnxruntime.InferenceSession(
|
2023-01-08 10:18:20 +03:00
|
|
|
onnx_model_file,
|
2023-01-07 18:25:21 +03:00
|
|
|
providers=providers
|
2023-01-07 14:07:39 +03:00
|
|
|
)
|
2023-01-10 16:49:16 +03:00
|
|
|
return self.get_info()
|
2023-01-08 15:56:39 +03:00
|
|
|
|
2022-12-31 10:08:14 +03:00
|
|
|
def destroy(self):
|
2023-01-10 16:49:16 +03:00
|
|
|
del self.net_g
|
2023-01-28 09:56:56 +03:00
|
|
|
del self.onnx_session
|
2022-12-31 10:08:14 +03:00
|
|
|
|
2023-01-07 18:25:21 +03:00
|
|
|
def get_info(self):
|
2023-01-08 10:18:20 +03:00
|
|
|
data = asdict(self.settings)
|
2023-01-09 15:52:39 +03:00
|
|
|
|
2023-01-12 10:38:45 +03:00
|
|
|
data["onnxExecutionProvider"] = self.onnx_session.get_providers() if self.onnx_session != None else []
|
2023-01-10 20:19:54 +03:00
|
|
|
files = ["configFile", "pyTorchModelFile", "onnxModelFile"]
|
2023-01-08 10:18:20 +03:00
|
|
|
for f in files:
|
2023-01-28 09:56:56 +03:00
|
|
|
if data[f] != None and os.path.exists(data[f]):
|
2023-01-08 14:28:57 +03:00
|
|
|
data[f] = os.path.basename(data[f])
|
|
|
|
else:
|
|
|
|
data[f] = ""
|
|
|
|
|
2023-01-08 10:18:20 +03:00
|
|
|
return data
|
|
|
|
|
2023-02-15 01:18:05 +03:00
|
|
|
def _get_f0_dio(self, y, sr=SAMPLING_RATE):
|
|
|
|
_f0, time = pw.dio(y, sr, frame_period=5)
|
|
|
|
f0 = pw.stonemask(y, _f0, time, sr)
|
|
|
|
time = np.linspace(0, y.shape[0] / sr, len(time))
|
|
|
|
return f0, time
|
|
|
|
|
|
|
|
def _get_f0_harvest(self, y, sr=SAMPLING_RATE):
|
|
|
|
_f0, time = pw.harvest(y, sr, frame_period=5)
|
|
|
|
f0 = pw.stonemask(y, _f0, time, sr)
|
|
|
|
time = np.linspace(0, y.shape[0] / sr, len(time))
|
|
|
|
return f0, time
|
|
|
|
|
2023-01-28 09:56:56 +03:00
|
|
|
def update_setteings(self, key: str, val: any):
|
2023-01-08 14:28:57 +03:00
|
|
|
if key == "onnxExecutionProvider" and self.onnx_session != None:
|
2023-01-08 11:58:27 +03:00
|
|
|
if val == "CUDAExecutionProvider":
|
2023-01-10 23:21:56 +03:00
|
|
|
if self.settings.gpu < 0 or self.settings.gpu >= self.gpu_num:
|
|
|
|
self.settings.gpu = 0
|
2023-01-28 09:56:56 +03:00
|
|
|
provider_options = [{'device_id': self.settings.gpu}]
|
2023-01-08 11:58:27 +03:00
|
|
|
self.onnx_session.set_providers(providers=[val], provider_options=provider_options)
|
|
|
|
else:
|
|
|
|
self.onnx_session.set_providers(providers=[val])
|
2023-01-08 10:18:20 +03:00
|
|
|
elif key in self.settings.intData:
|
|
|
|
setattr(self.settings, key, int(val))
|
2023-01-08 14:28:57 +03:00
|
|
|
if key == "gpu" and val >= 0 and val < self.gpu_num and self.onnx_session != None:
|
2023-01-08 11:58:27 +03:00
|
|
|
providers = self.onnx_session.get_providers()
|
2023-01-10 18:59:09 +03:00
|
|
|
print("Providers:", providers)
|
2023-01-08 11:58:27 +03:00
|
|
|
if "CUDAExecutionProvider" in providers:
|
2023-01-28 09:56:56 +03:00
|
|
|
provider_options = [{'device_id': self.settings.gpu}]
|
2023-01-08 11:58:27 +03:00
|
|
|
self.onnx_session.set_providers(providers=["CUDAExecutionProvider"], provider_options=provider_options)
|
2023-01-08 15:19:44 +03:00
|
|
|
if key == "crossFadeOffsetRate" or key == "crossFadeEndRate":
|
|
|
|
self.unpackedData_length = 0
|
2023-02-14 23:02:51 +03:00
|
|
|
if key == "recordIO" and val == 1:
|
|
|
|
self._setupRecordIO()
|
2023-02-15 01:18:05 +03:00
|
|
|
if key == "recordIO" and val == 0:
|
|
|
|
try:
|
|
|
|
stream_input_file = os.path.join(TMP_DIR, "in.wav")
|
|
|
|
analyze_file_dio = os.path.join(TMP_DIR, "analyze-dio.png")
|
|
|
|
analyze_file_harvest = os.path.join(TMP_DIR, "analyze-harvest.png")
|
|
|
|
y, sr = librosa.load(stream_input_file, SAMPLING_RATE)
|
|
|
|
y = y.astype(np.float64)
|
|
|
|
spec = librosa.amplitude_to_db(np.abs(librosa.stft(y, n_fft=2048, win_length=2048, hop_length=128)), ref=np.max)
|
|
|
|
f0_dio, times = self._get_f0_dio(y)
|
|
|
|
f0_harvest, times = self._get_f0_harvest(y)
|
|
|
|
|
|
|
|
pylab.close()
|
|
|
|
HOP_LENGTH = 128
|
|
|
|
img = librosa.display.specshow(spec, sr=SAMPLING_RATE, hop_length=HOP_LENGTH, x_axis='time', y_axis='log', )
|
|
|
|
pylab.plot(times, f0_dio, label='f0', color=(0, 1, 1, 0.6), linewidth=3)
|
|
|
|
pylab.savefig(analyze_file_dio)
|
|
|
|
|
|
|
|
pylab.close()
|
|
|
|
HOP_LENGTH = 128
|
|
|
|
img = librosa.display.specshow(spec, sr=SAMPLING_RATE, hop_length=HOP_LENGTH, x_axis='time', y_axis='log', )
|
|
|
|
pylab.plot(times, f0_harvest, label='f0', color=(0, 1, 1, 0.6), linewidth=3)
|
|
|
|
pylab.savefig(analyze_file_harvest)
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
print("recordIO exception", e)
|
|
|
|
|
2023-01-08 10:18:20 +03:00
|
|
|
elif key in self.settings.floatData:
|
|
|
|
setattr(self.settings, key, float(val))
|
|
|
|
elif key in self.settings.strData:
|
|
|
|
setattr(self.settings, key, str(val))
|
2023-01-08 03:45:58 +03:00
|
|
|
else:
|
2023-01-08 10:18:20 +03:00
|
|
|
print(f"{key} is not mutalbe variable!")
|
|
|
|
|
2023-01-10 18:59:09 +03:00
|
|
|
return self.get_info()
|
2023-01-08 10:18:20 +03:00
|
|
|
|
|
|
|
def _generate_strength(self, unpackedData):
|
2023-01-07 14:07:39 +03:00
|
|
|
|
2023-01-11 19:05:38 +03:00
|
|
|
if self.unpackedData_length != unpackedData.shape[0] or self.currentCrossFadeOffsetRate != self.settings.crossFadeOffsetRate or self.currentCrossFadeEndRate != self.settings.crossFadeEndRate or self.currentCrossFadeOverlapRate != self.settings.crossFadeOverlapRate:
|
2023-01-04 20:28:36 +03:00
|
|
|
self.unpackedData_length = unpackedData.shape[0]
|
2023-01-10 18:59:09 +03:00
|
|
|
self.currentCrossFadeOffsetRate = self.settings.crossFadeOffsetRate
|
|
|
|
self.currentCrossFadeEndRate = self.settings.crossFadeEndRate
|
2023-01-11 19:05:38 +03:00
|
|
|
self.currentCrossFadeOverlapRate = self.settings.crossFadeOverlapRate
|
|
|
|
|
|
|
|
overlapSize = int(unpackedData.shape[0] * self.settings.crossFadeOverlapRate)
|
|
|
|
|
|
|
|
cf_offset = int(overlapSize * self.settings.crossFadeOffsetRate)
|
2023-01-28 09:56:56 +03:00
|
|
|
cf_end = int(overlapSize * self.settings.crossFadeEndRate)
|
2023-01-04 20:28:36 +03:00
|
|
|
cf_range = cf_end - cf_offset
|
|
|
|
percent = np.arange(cf_range) / cf_range
|
|
|
|
|
2023-01-28 09:56:56 +03:00
|
|
|
np_prev_strength = np.cos(percent * 0.5 * np.pi) ** 2
|
|
|
|
np_cur_strength = np.cos((1 - percent) * 0.5 * np.pi) ** 2
|
2023-01-04 20:28:36 +03:00
|
|
|
|
2023-01-11 19:05:38 +03:00
|
|
|
self.np_prev_strength = np.concatenate([np.ones(cf_offset), np_prev_strength, np.zeros(overlapSize - cf_offset - len(np_prev_strength))])
|
|
|
|
self.np_cur_strength = np.concatenate([np.zeros(cf_offset), np_cur_strength, np.ones(overlapSize - cf_offset - len(np_cur_strength))])
|
2023-01-04 20:28:36 +03:00
|
|
|
|
2023-01-07 14:07:39 +03:00
|
|
|
self.prev_strength = torch.FloatTensor(self.np_prev_strength)
|
|
|
|
self.cur_strength = torch.FloatTensor(self.np_cur_strength)
|
2023-01-04 20:28:36 +03:00
|
|
|
|
2023-01-08 10:18:20 +03:00
|
|
|
# torch.set_printoptions(edgeitems=2100)
|
2023-01-04 20:28:36 +03:00
|
|
|
print("Generated Strengths")
|
2023-01-05 16:08:26 +03:00
|
|
|
# print(f"cross fade: start:{cf_offset} end:{cf_end} range:{cf_range}")
|
|
|
|
# print(f"target_len:{unpackedData.shape[0]}, prev_len:{len(self.prev_strength)} cur_len:{len(self.cur_strength)}")
|
|
|
|
# print("Prev", self.prev_strength)
|
|
|
|
# print("Cur", self.cur_strength)
|
2023-01-28 09:56:56 +03:00
|
|
|
|
2023-01-04 20:28:36 +03:00
|
|
|
# ひとつ前の結果とサイズが変わるため、記録は消去する。
|
2023-01-05 15:51:06 +03:00
|
|
|
if hasattr(self, 'prev_audio1') == True:
|
2023-01-28 09:56:56 +03:00
|
|
|
delattr(self, "prev_audio1")
|
2023-01-04 20:28:36 +03:00
|
|
|
|
2023-01-28 09:56:56 +03:00
|
|
|
def _generate_input(self, unpackedData: any, convertSize: int):
|
2023-01-08 03:22:22 +03:00
|
|
|
# 今回変換するデータをテンソルとして整形する
|
2023-01-28 09:56:56 +03:00
|
|
|
audio = torch.FloatTensor(unpackedData.astype(np.float32)) # float32でtensorfを作成
|
|
|
|
audio_norm = audio / self.hps.data.max_wav_value # normalize
|
|
|
|
audio_norm = audio_norm.unsqueeze(0) # unsqueeze
|
|
|
|
self.audio_buffer = torch.cat([self.audio_buffer, audio_norm], axis=1) # 過去のデータに連結
|
2023-02-12 06:25:57 +03:00
|
|
|
# audio_norm = self.audio_buffer[:, -(convertSize + 1280 * 2):] # 変換対象の部分だけ抽出
|
|
|
|
audio_norm = self.audio_buffer[:, -(convertSize):] # 変換対象の部分だけ抽出
|
2023-01-08 03:22:22 +03:00
|
|
|
self.audio_buffer = audio_norm
|
|
|
|
|
2023-02-10 18:59:44 +03:00
|
|
|
# TBD: numpy <--> pytorch変換が行ったり来たりしているが、まずは動かすことを最優先。
|
2023-02-12 06:25:57 +03:00
|
|
|
audio_norm_np = audio_norm.squeeze().numpy().astype(np.float64)
|
2023-02-14 23:02:51 +03:00
|
|
|
if self.settings.f0Detector == "dio":
|
|
|
|
_f0, _time = pw.dio(audio_norm_np, self.hps.data.sampling_rate, frame_period=5.5)
|
|
|
|
f0 = pw.stonemask(audio_norm_np, _f0, _time, self.hps.data.sampling_rate)
|
|
|
|
else:
|
|
|
|
f0, t = pw.harvest(audio_norm_np, self.hps.data.sampling_rate, frame_period=5.5, f0_floor=71.0, f0_ceil=1000.0)
|
2023-02-10 18:59:44 +03:00
|
|
|
f0 = convert_continuos_f0(f0, int(audio_norm_np.shape[0] / self.hps.data.hop_length))
|
|
|
|
f0 = torch.from_numpy(f0.astype(np.float32))
|
|
|
|
|
2023-01-08 03:22:22 +03:00
|
|
|
spec = spectrogram_torch(audio_norm, self.hps.data.filter_length,
|
2023-01-28 09:56:56 +03:00
|
|
|
self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length,
|
|
|
|
center=False)
|
2023-02-10 18:59:44 +03:00
|
|
|
# dispose_stft_specs = 2
|
|
|
|
# spec = spec[:, dispose_stft_specs:-dispose_stft_specs]
|
|
|
|
# f0 = f0[dispose_stft_specs:-dispose_stft_specs]
|
2023-01-08 03:22:22 +03:00
|
|
|
spec = torch.squeeze(spec, 0)
|
2023-01-08 10:18:20 +03:00
|
|
|
sid = torch.LongTensor([int(self.settings.srcId)])
|
2023-01-08 03:22:22 +03:00
|
|
|
|
2023-02-10 18:59:44 +03:00
|
|
|
# data = (self.text_norm, spec, audio_norm, sid)
|
|
|
|
# data = TextAudioSpeakerCollate()([data])
|
|
|
|
data = TextAudioSpeakerCollate(
|
|
|
|
sample_rate=self.hps.data.sampling_rate,
|
|
|
|
hop_size=self.hps.data.hop_length,
|
2023-02-12 06:25:57 +03:00
|
|
|
f0_factor=self.settings.f0Factor
|
2023-02-10 18:59:44 +03:00
|
|
|
)([(spec, sid, f0)])
|
|
|
|
|
2023-02-14 23:02:51 +03:00
|
|
|
return data, f0.numpy()
|
2023-01-04 20:28:36 +03:00
|
|
|
|
2023-01-08 11:58:27 +03:00
|
|
|
def _onnx_inference(self, data, inputSize):
|
2023-01-08 14:28:57 +03:00
|
|
|
if hasattr(self, "onnx_session") == False or self.onnx_session == None:
|
|
|
|
print("[Voice Changer] No ONNX session.")
|
|
|
|
return np.zeros(1).astype(np.int16)
|
|
|
|
|
|
|
|
x, x_lengths, spec, spec_lengths, y, y_lengths, sid_src = [x for x in data]
|
|
|
|
sid_tgt1 = torch.LongTensor([self.settings.dstId])
|
|
|
|
# if spec.size()[2] >= 8:
|
|
|
|
audio1 = self.onnx_session.run(
|
|
|
|
["audio"],
|
|
|
|
{
|
|
|
|
"specs": spec.numpy(),
|
|
|
|
"lengths": spec_lengths.numpy(),
|
|
|
|
"sid_src": sid_src.numpy(),
|
|
|
|
"sid_tgt": sid_tgt1.numpy()
|
2023-01-28 09:56:56 +03:00
|
|
|
})[0][0, 0] * self.hps.data.max_wav_value
|
2023-01-08 14:28:57 +03:00
|
|
|
if hasattr(self, 'np_prev_audio1') == True:
|
2023-01-11 19:05:38 +03:00
|
|
|
overlapSize = int(inputSize * self.settings.crossFadeOverlapRate)
|
2023-01-28 09:56:56 +03:00
|
|
|
prev_overlap = self.np_prev_audio1[-1 * overlapSize:]
|
|
|
|
cur_overlap = audio1[-1 * (inputSize + overlapSize):-1 * inputSize]
|
2023-01-11 19:05:38 +03:00
|
|
|
# print(prev_overlap.shape, self.np_prev_strength.shape, cur_overlap.shape, self.np_cur_strength.shape)
|
|
|
|
# print(">>>>>>>>>>>", -1*(inputSize + overlapSize) , -1*inputSize)
|
|
|
|
powered_prev = prev_overlap * self.np_prev_strength
|
|
|
|
powered_cur = cur_overlap * self.np_cur_strength
|
|
|
|
powered_result = powered_prev + powered_cur
|
|
|
|
|
2023-01-28 09:56:56 +03:00
|
|
|
cur = audio1[-1 * inputSize:-1 * overlapSize]
|
|
|
|
result = np.concatenate([powered_result, cur], axis=0)
|
2023-01-08 11:58:27 +03:00
|
|
|
else:
|
2023-01-11 19:05:38 +03:00
|
|
|
result = np.zeros(1).astype(np.int16)
|
2023-01-08 14:28:57 +03:00
|
|
|
self.np_prev_audio1 = audio1
|
|
|
|
return result
|
2023-01-08 11:58:27 +03:00
|
|
|
|
|
|
|
def _pyTorch_inference(self, data, inputSize):
|
2023-01-28 09:56:56 +03:00
|
|
|
if hasattr(self, "net_g") == False or self.net_g == None:
|
2023-01-08 14:28:57 +03:00
|
|
|
print("[Voice Changer] No pyTorch session.")
|
|
|
|
return np.zeros(1).astype(np.int16)
|
|
|
|
|
2023-01-08 11:58:27 +03:00
|
|
|
if self.settings.gpu < 0 or self.gpu_num == 0:
|
|
|
|
with torch.no_grad():
|
2023-02-10 18:59:44 +03:00
|
|
|
spec, spec_lengths, sid_src, sin, d = data
|
|
|
|
spec = spec.cpu()
|
|
|
|
spec_lengths = spec_lengths.cpu()
|
|
|
|
sid_src = sid_src.cpu()
|
|
|
|
sin = sin.cpu()
|
|
|
|
d = tuple([d[:1].cpu() for d in d])
|
|
|
|
sid_target = torch.LongTensor([self.settings.dstId]).cpu()
|
|
|
|
|
|
|
|
audio1 = self.net_g.cpu().voice_conversion(spec, spec_lengths, sin, d, sid_src, sid_target)[0, 0].data * self.hps.data.max_wav_value
|
2023-01-08 11:58:27 +03:00
|
|
|
|
|
|
|
if self.prev_strength.device != torch.device('cpu'):
|
|
|
|
print(f"prev_strength move from {self.prev_strength.device} to cpu")
|
|
|
|
self.prev_strength = self.prev_strength.cpu()
|
|
|
|
if self.cur_strength.device != torch.device('cpu'):
|
|
|
|
print(f"cur_strength move from {self.cur_strength.device} to cpu")
|
|
|
|
self.cur_strength = self.cur_strength.cpu()
|
|
|
|
|
2023-01-28 09:56:56 +03:00
|
|
|
if hasattr(self, 'prev_audio1') == True and self.prev_audio1.device == torch.device('cpu'): # prev_audio1が所望のデバイスに無い場合は一回休み。
|
2023-01-12 11:01:57 +03:00
|
|
|
overlapSize = int(inputSize * self.settings.crossFadeOverlapRate)
|
2023-01-28 09:56:56 +03:00
|
|
|
prev_overlap = self.prev_audio1[-1 * overlapSize:]
|
|
|
|
cur_overlap = audio1[-1 * (inputSize + overlapSize):-1 * inputSize]
|
2023-01-12 11:01:57 +03:00
|
|
|
powered_prev = prev_overlap * self.prev_strength
|
|
|
|
powered_cur = cur_overlap * self.cur_strength
|
|
|
|
powered_result = powered_prev + powered_cur
|
|
|
|
|
2023-01-28 09:56:56 +03:00
|
|
|
cur = audio1[-1 * inputSize:-1 * overlapSize] # 今回のインプットの生部分。(インプット - 次回のCrossfade部分)。
|
|
|
|
result = torch.cat([powered_result, cur], axis=0) # Crossfadeと今回のインプットの生部分を結合
|
2023-01-12 11:01:57 +03:00
|
|
|
|
2023-01-08 11:58:27 +03:00
|
|
|
else:
|
2023-01-28 09:56:56 +03:00
|
|
|
cur = audio1[-2 * inputSize:-1 * inputSize]
|
2023-01-08 11:58:27 +03:00
|
|
|
result = cur
|
|
|
|
|
|
|
|
self.prev_audio1 = audio1
|
|
|
|
result = result.cpu().float().numpy()
|
|
|
|
|
|
|
|
else:
|
|
|
|
with torch.no_grad():
|
2023-02-10 18:59:44 +03:00
|
|
|
spec, spec_lengths, sid_src, sin, d = data
|
|
|
|
spec = spec.cuda(self.settings.gpu)
|
|
|
|
spec_lengths = spec_lengths.cuda(self.settings.gpu)
|
|
|
|
sid_src = sid_src.cuda(self.settings.gpu)
|
|
|
|
sin = sin.cuda(self.settings.gpu)
|
|
|
|
d = tuple([d[:1].cuda(self.settings.gpu) for d in d])
|
|
|
|
sid_target = torch.LongTensor([self.settings.dstId]).cuda(self.settings.gpu)
|
|
|
|
|
|
|
|
# audio1 = self.net_g.cuda(self.settings.gpu).voice_conversion(spec, spec_lengths, sid_src=sid_src,
|
|
|
|
# sid_tgt=sid_tgt1)[0, 0].data * self.hps.data.max_wav_value
|
|
|
|
|
|
|
|
audio1 = self.net_g.cuda(self.settings.gpu).voice_conversion(spec, spec_lengths, sin, d,
|
|
|
|
sid_src, sid_target)[0, 0].data * self.hps.data.max_wav_value
|
2023-01-08 11:58:27 +03:00
|
|
|
|
|
|
|
if self.prev_strength.device != torch.device('cuda', self.settings.gpu):
|
|
|
|
print(f"prev_strength move from {self.prev_strength.device} to gpu{self.settings.gpu}")
|
|
|
|
self.prev_strength = self.prev_strength.cuda(self.settings.gpu)
|
|
|
|
if self.cur_strength.device != torch.device('cuda', self.settings.gpu):
|
|
|
|
print(f"cur_strength move from {self.cur_strength.device} to gpu{self.settings.gpu}")
|
|
|
|
self.cur_strength = self.cur_strength.cuda(self.settings.gpu)
|
|
|
|
|
|
|
|
if hasattr(self, 'prev_audio1') == True and self.prev_audio1.device == torch.device('cuda', self.settings.gpu):
|
2023-01-12 11:01:57 +03:00
|
|
|
overlapSize = int(inputSize * self.settings.crossFadeOverlapRate)
|
2023-01-28 09:56:56 +03:00
|
|
|
prev_overlap = self.prev_audio1[-1 * overlapSize:]
|
|
|
|
cur_overlap = audio1[-1 * (inputSize + overlapSize):-1 * inputSize]
|
2023-01-12 11:01:57 +03:00
|
|
|
powered_prev = prev_overlap * self.prev_strength
|
|
|
|
powered_cur = cur_overlap * self.cur_strength
|
|
|
|
powered_result = powered_prev + powered_cur
|
|
|
|
|
2023-01-28 09:56:56 +03:00
|
|
|
cur = audio1[-1 * inputSize:-1 * overlapSize] # 今回のインプットの生部分。(インプット - 次回のCrossfade部分)。
|
|
|
|
result = torch.cat([powered_result, cur], axis=0) # Crossfadeと今回のインプットの生部分を結合
|
2023-01-12 11:01:57 +03:00
|
|
|
|
2023-01-08 11:58:27 +03:00
|
|
|
else:
|
2023-01-28 09:56:56 +03:00
|
|
|
cur = audio1[-2 * inputSize:-1 * inputSize]
|
2023-01-08 11:58:27 +03:00
|
|
|
result = cur
|
|
|
|
self.prev_audio1 = audio1
|
|
|
|
|
|
|
|
result = result.cpu().float().numpy()
|
|
|
|
return result
|
|
|
|
|
2023-02-12 11:07:28 +03:00
|
|
|
def on_request(self, unpackedData: any):
|
2023-01-28 09:56:56 +03:00
|
|
|
convertSize = self.settings.convertChunkNum * 128 # 128sample/1chunk
|
2023-02-12 06:25:57 +03:00
|
|
|
# print("convsize:", unpackedData.shape[0] * (1 + self.settings.crossFadeOverlapRate))
|
2023-01-28 09:56:56 +03:00
|
|
|
if unpackedData.shape[0] * (1 + self.settings.crossFadeOverlapRate) + 1024 > convertSize:
|
|
|
|
convertSize = int(unpackedData.shape[0] * (1 + self.settings.crossFadeOverlapRate)) + 1024
|
2023-01-12 15:42:02 +03:00
|
|
|
if convertSize < self.settings.minConvertSize:
|
|
|
|
convertSize = self.settings.minConvertSize
|
|
|
|
# print("convert Size", unpackedData.shape[0], unpackedData.shape[0]*(1 + self.settings.crossFadeOverlapRate), convertSize, self.settings.minConvertSize)
|
2023-01-08 03:22:22 +03:00
|
|
|
|
2023-02-12 06:25:57 +03:00
|
|
|
# convertSize = 8192
|
|
|
|
|
2023-01-08 10:18:20 +03:00
|
|
|
self._generate_strength(unpackedData)
|
2023-02-14 23:02:51 +03:00
|
|
|
# f0はデバッグ用
|
|
|
|
data, f0 = self._generate_input(unpackedData, convertSize)
|
2023-01-08 10:18:20 +03:00
|
|
|
|
2023-01-08 11:58:27 +03:00
|
|
|
try:
|
|
|
|
if self.settings.framework == "ONNX":
|
|
|
|
result = self._onnx_inference(data, unpackedData.shape[0])
|
|
|
|
else:
|
|
|
|
result = self._pyTorch_inference(data, unpackedData.shape[0])
|
|
|
|
|
|
|
|
except Exception as e:
|
2023-01-28 09:56:56 +03:00
|
|
|
print("VC PROCESSING!!!! EXCEPTION!!!", e)
|
2023-01-08 11:58:27 +03:00
|
|
|
print(traceback.format_exc())
|
2023-01-08 14:28:57 +03:00
|
|
|
if hasattr(self, "np_prev_audio1"):
|
|
|
|
del self.np_prev_audio1
|
|
|
|
if hasattr(self, "prev_audio1"):
|
|
|
|
del self.prev_audio1
|
|
|
|
return np.zeros(1).astype(np.int16)
|
2023-01-08 11:58:27 +03:00
|
|
|
|
|
|
|
result = result.astype(np.int16)
|
|
|
|
# print("on_request result size:",result.shape)
|
2023-02-14 23:02:51 +03:00
|
|
|
if self.settings.recordIO == 1:
|
|
|
|
self.stream_in.write(unpackedData.astype(np.int16).tobytes())
|
|
|
|
self.stream_out.write(result.tobytes())
|
2023-01-08 11:58:27 +03:00
|
|
|
return result
|
2023-02-12 06:25:57 +03:00
|
|
|
|
|
|
|
|
|
|
|
#########################################################################################
|
|
|
|
|
|
|
|
|
|
|
|
def overlap_merge(self, now_wav, prev_wav, overlap_length):
|
|
|
|
"""
|
|
|
|
生成したwavデータを前回生成したwavデータとoverlap_lengthだけ重ねてグラデーション的にマージします
|
|
|
|
終端のoverlap_lengthぶんは次回マージしてから再生するので削除します
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
now_wav: 今回生成した音声wavデータ
|
|
|
|
prev_wav: 前回生成した音声wavデータ
|
|
|
|
overlap_length: 重ねる長さ
|
|
|
|
"""
|
|
|
|
if overlap_length == 0:
|
|
|
|
return now_wav
|
|
|
|
gradation = np.arange(overlap_length) / overlap_length
|
|
|
|
now = np.frombuffer(now_wav, dtype='int16')
|
|
|
|
prev = np.frombuffer(prev_wav, dtype='int16')
|
|
|
|
now_head = now[:overlap_length]
|
|
|
|
prev_tail = prev[-overlap_length:]
|
|
|
|
print("merge params:", gradation.shape, now.shape, prev.shape, now_head.shape, prev_tail.shape)
|
|
|
|
merged = prev_tail * (np.cos(gradation * np.pi * 0.5) ** 2) + now_head * (np.cos((1 - gradation) * np.pi * 0.5) ** 2)
|
|
|
|
# merged = prev_tail * (1 - gradation) + now_head * gradation
|
|
|
|
overlapped = np.append(merged, now[overlap_length:-overlap_length])
|
|
|
|
signal = np.round(overlapped, decimals=0)
|
|
|
|
signal = signal.astype(np.int16)
|
|
|
|
# signal = signal.astype(np.int16).tobytes()
|
|
|
|
return signal
|
|
|
|
|
2023-02-12 11:07:28 +03:00
|
|
|
def on_request_(self, unpackedData: any):
|
2023-02-12 06:25:57 +03:00
|
|
|
|
|
|
|
self._generate_strength(unpackedData)
|
|
|
|
|
|
|
|
convertSize = 8192
|
|
|
|
unpackedData = unpackedData.astype(np.int16)
|
|
|
|
if hasattr(self, 'stored_raw_input') == False:
|
|
|
|
self.stored_raw_input = unpackedData
|
|
|
|
else:
|
|
|
|
self.stored_raw_input = np.concatenate([self.stored_raw_input, unpackedData])
|
|
|
|
|
|
|
|
self.stored_raw_input = self.stored_raw_input[-1 * (convertSize):]
|
|
|
|
processing_input = self.stored_raw_input
|
|
|
|
|
|
|
|
print("signal_shape1", unpackedData.shape, processing_input.shape, processing_input.dtype)
|
|
|
|
processing_input = processing_input / self.hps.data.max_wav_value
|
|
|
|
print("type:", processing_input.dtype)
|
|
|
|
_f0, _time = pw.dio(processing_input, self.hps.data.sampling_rate, frame_period=5.5)
|
|
|
|
f0 = pw.stonemask(processing_input, _f0, _time, self.hps.data.sampling_rate)
|
|
|
|
f0 = convert_continuos_f0(f0, int(processing_input.shape[0] / self.hps.data.hop_length))
|
|
|
|
f0 = torch.from_numpy(f0.astype(np.float32))
|
|
|
|
|
|
|
|
print("signal_shape2", f0.shape)
|
|
|
|
|
|
|
|
processing_input = torch.from_numpy(processing_input.astype(np.float32)).clone()
|
|
|
|
with torch.no_grad():
|
|
|
|
trans_length = processing_input.size()[0]
|
|
|
|
# spec, sid = get_audio_text_speaker_pair(signal.view(1, trans_length), Hyperparameters.SOURCE_ID)
|
|
|
|
processing_input_v = processing_input.view(1, trans_length) # unsqueezeと同じ
|
|
|
|
|
|
|
|
print("processing_input_v shape:", processing_input_v.shape)
|
|
|
|
spec = spectrogram_torch(processing_input_v, self.hps.data.filter_length,
|
|
|
|
self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length,
|
|
|
|
center=False)
|
|
|
|
spec = torch.squeeze(spec, 0)
|
|
|
|
sid = torch.LongTensor([int(self.settings.srcId)])
|
|
|
|
dispose_stft_specs = 2
|
|
|
|
spec = spec[:, dispose_stft_specs:-dispose_stft_specs]
|
|
|
|
f0 = f0[dispose_stft_specs:-dispose_stft_specs]
|
|
|
|
print("spec shape:", spec.shape)
|
|
|
|
data = TextAudioSpeakerCollate(
|
|
|
|
sample_rate=self.hps.data.sampling_rate,
|
|
|
|
hop_size=self.hps.data.hop_length,
|
|
|
|
f0_factor=self.settings.f0Factor
|
|
|
|
)([(spec, sid, f0)])
|
|
|
|
|
|
|
|
if self.settings.gpu >= 0 or self.gpu_num > 0:
|
|
|
|
# spec, spec_lengths, sid_src, sin, d = [x.cuda(Hyperparameters.GPU_ID) for x in data]
|
|
|
|
spec, spec_lengths, sid_src, sin, d = data
|
|
|
|
spec = spec.cuda(self.settings.gpu)
|
|
|
|
spec_lengths = spec_lengths.cuda(self.settings.gpu)
|
|
|
|
sid_src = sid_src.cuda(self.settings.gpu)
|
|
|
|
sin = sin.cuda(self.settings.gpu)
|
|
|
|
d = tuple([d[:1].cuda(self.settings.gpu) for d in d])
|
|
|
|
sid_target = torch.LongTensor([self.settings.dstId]).cuda(self.settings.gpu)
|
|
|
|
audio = self.net_g.cuda(self.settings.gpu).voice_conversion(spec, spec_lengths,
|
|
|
|
sin, d, sid_src, sid_target)[0, 0].data.cpu().float().numpy()
|
|
|
|
else:
|
|
|
|
spec, spec_lengths, sid_src, sin, d = data
|
|
|
|
sid_target = torch.LongTensor([self.settings.dstId])
|
|
|
|
audio = self.net_g.voice_conversion(spec, spec_lengths, sin, d, sid_src, sid_target)[0, 0].data.cpu().float().numpy()
|
|
|
|
|
|
|
|
dispose_conv1d_length = 1280
|
|
|
|
audio = audio[dispose_conv1d_length:-dispose_conv1d_length]
|
|
|
|
audio = audio * self.hps.data.max_wav_value
|
|
|
|
audio = audio.astype(np.int16)
|
|
|
|
print("fin audio shape:", audio.shape)
|
|
|
|
audio = audio.tobytes()
|
|
|
|
|
|
|
|
if hasattr(self, "prev_audio"):
|
|
|
|
try:
|
|
|
|
audio1 = self.overlap_merge(audio, self.prev_audio, 1024)
|
|
|
|
except:
|
|
|
|
audio1 = np.zeros(1).astype(np.int16)
|
|
|
|
pass
|
|
|
|
# return np.zeros(1).astype(np.int16)
|
|
|
|
else:
|
|
|
|
audio1 = np.zeros(1).astype(np.int16)
|
|
|
|
|
|
|
|
self.prev_audio = audio
|
|
|
|
self.out.write(audio)
|
|
|
|
self.stream_in.write(unpackedData.tobytes())
|
2023-02-12 11:07:28 +03:00
|
|
|
# print(audio1)
|
2023-02-12 06:25:57 +03:00
|
|
|
|
|
|
|
return audio1
|