voice-changer/server/voice_changer/VoiceChanger.py

403 lines
17 KiB
Python
Raw Normal View History

import sys
sys.path.append("MMVC_Client/python")
2023-02-14 23:02:51 +03:00
from const import ERROR_NO_ONNX_SESSION, TMP_DIR
2022-12-31 10:08:14 +03:00
import torch
2023-01-28 09:56:56 +03:00
import os
import traceback
2022-12-31 10:08:14 +03:00
import numpy as np
2023-01-08 10:18:20 +03:00
from dataclasses import dataclass, asdict
2023-02-18 14:53:15 +03:00
import resampy
import onnxruntime
from symbols import symbols
2022-12-31 10:08:14 +03:00
from models import SynthesizerTrn
2023-02-10 18:59:44 +03:00
import pyworld as pw
from voice_changer.client_modules import convert_continuos_f0, spectrogram_torch, TextAudioSpeakerCollate, get_hparams_from_file, load_checkpoint
from voice_changer.MMVCv15 import MMVCv15
from voice_changer.IORecorder import IORecorder
from voice_changer.IOAnalyzer import IOAnalyzer
2023-02-20 22:07:43 +03:00
import time
2022-12-31 10:08:14 +03:00
2023-01-28 09:56:56 +03:00
providers = ['OpenVINOExecutionProvider', "CUDAExecutionProvider", "DmlExecutionProvider", "CPUExecutionProvider"]
2022-12-31 10:08:14 +03:00
2023-02-12 06:25:57 +03:00
import wave
2023-02-15 01:18:05 +03:00
import matplotlib
matplotlib.use('Agg')
import pylab
import librosa
import librosa.display
SAMPLING_RATE = 24000
2023-02-12 06:25:57 +03:00
STREAM_INPUT_FILE = os.path.join(TMP_DIR, "in.wav")
STREAM_OUTPUT_FILE = os.path.join(TMP_DIR, "out.wav")
STREAM_ANALYZE_FILE_DIO = os.path.join(TMP_DIR, "analyze-dio.png")
STREAM_ANALYZE_FILE_HARVEST = os.path.join(TMP_DIR, "analyze-harvest.png")
2023-02-12 06:25:57 +03:00
2023-01-08 10:18:20 +03:00
@dataclass
class VocieChangerSettings():
2023-01-28 09:56:56 +03:00
gpu: int = 0
srcId: int = 0
dstId: int = 101
2023-02-21 00:03:37 +03:00
inputSampleRate: int = 24000 # 48000 or 24000
2023-01-28 09:56:56 +03:00
crossFadeOffsetRate: float = 0.1
crossFadeEndRate: float = 0.9
crossFadeOverlapSize: int = 4096
2023-02-10 18:59:44 +03:00
f0Factor: float = 1.0
2023-02-14 23:02:51 +03:00
f0Detector: str = "dio" # dio or harvest
2023-02-20 01:14:05 +03:00
recordIO: int = 0 # 0:off, 1:on
2023-02-10 18:59:44 +03:00
framework: str = "PyTorch" # PyTorch or ONNX
2023-01-28 09:56:56 +03:00
pyTorchModelFile: str = ""
onnxModelFile: str = ""
configFile: str = ""
2023-02-10 18:59:44 +03:00
2023-01-08 10:18:20 +03:00
# ↓mutableな物だけ列挙
intData = ["gpu", "srcId", "dstId", "inputSampleRate", "crossFadeOverlapSize", "recordIO"]
floatData = ["crossFadeOffsetRate", "crossFadeEndRate", "f0Factor"]
strData = ["framework", "f0Detector"]
2023-02-17 22:15:34 +03:00
def readMicrophone(queue, sid, deviceIndex):
print("READ MIC", queue, sid, deviceIndex)
2023-01-08 10:18:20 +03:00
2023-01-28 09:56:56 +03:00
2022-12-31 10:08:14 +03:00
class VoiceChanger():
2023-01-08 10:18:20 +03:00
2023-01-29 03:42:45 +03:00
def __init__(self):
2023-01-08 10:18:20 +03:00
# 初期化
2023-01-29 03:42:45 +03:00
self.settings = VocieChangerSettings()
2023-01-28 09:56:56 +03:00
self.unpackedData_length = 0
2023-01-10 16:49:16 +03:00
self.net_g = None
self.onnx_session = None
2023-01-28 09:56:56 +03:00
self.currentCrossFadeOffsetRate = 0
self.currentCrossFadeEndRate = 0
self.currentCrossFadeOverlapSize = 0
2023-01-28 09:56:56 +03:00
self.voiceChanger = MMVCv15()
2022-12-31 10:08:14 +03:00
self.gpu_num = torch.cuda.device_count()
2023-01-28 09:56:56 +03:00
self.text_norm = torch.LongTensor([0, 6, 0])
2022-12-31 10:08:14 +03:00
self.audio_buffer = torch.zeros(1, 0)
self.prev_audio = np.zeros(1)
2023-01-07 18:25:21 +03:00
self.mps_enabled = getattr(torch.backends, "mps", None) is not None and torch.backends.mps.is_available()
2022-12-31 10:08:14 +03:00
2023-01-04 20:28:36 +03:00
print(f"VoiceChanger Initialized (GPU_NUM:{self.gpu_num}, mps_enabled:{self.mps_enabled})")
2023-01-28 09:56:56 +03:00
def loadModel(self, config: str, pyTorch_model_file: str = None, onnx_model_file: str = None):
2023-01-10 20:19:54 +03:00
self.settings.configFile = config
2023-01-29 03:42:45 +03:00
self.hps = get_hparams_from_file(config)
2023-01-10 20:19:54 +03:00
if pyTorch_model_file != None:
self.settings.pyTorchModelFile = pyTorch_model_file
if onnx_model_file:
self.settings.onnxModelFile = onnx_model_file
2023-01-28 09:56:56 +03:00
2023-01-07 18:25:21 +03:00
# PyTorchモデル生成
2023-01-08 10:18:20 +03:00
if pyTorch_model_file != None:
2023-01-07 18:25:21 +03:00
self.net_g = SynthesizerTrn(
2023-02-10 18:59:44 +03:00
spec_channels=self.hps.data.filter_length // 2 + 1,
segment_size=self.hps.train.segment_size // self.hps.data.hop_length,
inter_channels=self.hps.model.inter_channels,
hidden_channels=self.hps.model.hidden_channels,
upsample_rates=self.hps.model.upsample_rates,
upsample_initial_channel=self.hps.model.upsample_initial_channel,
upsample_kernel_sizes=self.hps.model.upsample_kernel_sizes,
n_flow=self.hps.model.n_flow,
dec_out_channels=1,
dec_kernel_size=7,
2023-01-07 18:25:21 +03:00
n_speakers=self.hps.data.n_speakers,
2023-02-10 18:59:44 +03:00
gin_channels=self.hps.model.gin_channels,
requires_grad_pe=self.hps.requires_grad.pe,
requires_grad_flow=self.hps.requires_grad.flow,
requires_grad_text_enc=self.hps.requires_grad.text_enc,
requires_grad_dec=self.hps.requires_grad.dec
)
2023-01-07 18:25:21 +03:00
self.net_g.eval()
load_checkpoint(pyTorch_model_file, self.net_g, None)
# utils.load_checkpoint(pyTorch_model_file, self.net_g, None)
2023-01-07 18:25:21 +03:00
# ONNXモデル生成
2023-01-08 10:18:20 +03:00
if onnx_model_file != None:
2023-01-07 14:07:39 +03:00
ort_options = onnxruntime.SessionOptions()
ort_options.intra_op_num_threads = 8
self.onnx_session = onnxruntime.InferenceSession(
2023-01-08 10:18:20 +03:00
onnx_model_file,
2023-01-07 18:25:21 +03:00
providers=providers
2023-01-07 14:07:39 +03:00
)
2023-01-10 16:49:16 +03:00
return self.get_info()
2023-01-08 15:56:39 +03:00
2022-12-31 10:08:14 +03:00
def destroy(self):
2023-01-10 16:49:16 +03:00
del self.net_g
2023-01-28 09:56:56 +03:00
del self.onnx_session
2022-12-31 10:08:14 +03:00
2023-01-07 18:25:21 +03:00
def get_info(self):
2023-01-08 10:18:20 +03:00
data = asdict(self.settings)
2023-01-09 15:52:39 +03:00
2023-02-21 11:54:02 +03:00
data["onnxExecutionProviders"] = self.onnx_session.get_providers() if self.onnx_session != None else []
2023-01-10 20:19:54 +03:00
files = ["configFile", "pyTorchModelFile", "onnxModelFile"]
2023-01-08 10:18:20 +03:00
for f in files:
2023-01-28 09:56:56 +03:00
if data[f] != None and os.path.exists(data[f]):
2023-01-08 14:28:57 +03:00
data[f] = os.path.basename(data[f])
else:
data[f] = ""
2023-01-08 10:18:20 +03:00
return data
2023-01-28 09:56:56 +03:00
def update_setteings(self, key: str, val: any):
2023-01-08 14:28:57 +03:00
if key == "onnxExecutionProvider" and self.onnx_session != None:
2023-01-08 11:58:27 +03:00
if val == "CUDAExecutionProvider":
2023-01-10 23:21:56 +03:00
if self.settings.gpu < 0 or self.settings.gpu >= self.gpu_num:
self.settings.gpu = 0
2023-01-28 09:56:56 +03:00
provider_options = [{'device_id': self.settings.gpu}]
2023-01-08 11:58:27 +03:00
self.onnx_session.set_providers(providers=[val], provider_options=provider_options)
else:
self.onnx_session.set_providers(providers=[val])
2023-01-08 10:18:20 +03:00
elif key in self.settings.intData:
setattr(self.settings, key, int(val))
2023-01-08 14:28:57 +03:00
if key == "gpu" and val >= 0 and val < self.gpu_num and self.onnx_session != None:
2023-01-08 11:58:27 +03:00
providers = self.onnx_session.get_providers()
2023-01-10 18:59:09 +03:00
print("Providers:", providers)
2023-01-08 11:58:27 +03:00
if "CUDAExecutionProvider" in providers:
2023-01-28 09:56:56 +03:00
provider_options = [{'device_id': self.settings.gpu}]
2023-01-08 11:58:27 +03:00
self.onnx_session.set_providers(providers=["CUDAExecutionProvider"], provider_options=provider_options)
2023-01-08 15:19:44 +03:00
if key == "crossFadeOffsetRate" or key == "crossFadeEndRate":
self.unpackedData_length = 0
2023-02-14 23:02:51 +03:00
if key == "recordIO" and val == 1:
if hasattr(self, "ioRecorder"):
self.ioRecorder.close()
self.ioRecorder = IORecorder(STREAM_INPUT_FILE, STREAM_OUTPUT_FILE, self.settings.inputSampleRate)
2023-02-15 01:18:05 +03:00
if key == "recordIO" and val == 0:
if hasattr(self, "ioRecorder"):
self.ioRecorder.close()
2023-02-16 21:03:21 +03:00
pass
if key == "recordIO" and val == 2:
if hasattr(self, "ioRecorder"):
self.ioRecorder.close()
if hasattr(self, "ioAnalyzer") == False:
self.ioAnalyzer = IOAnalyzer()
2023-02-15 01:18:05 +03:00
try:
self.ioAnalyzer.analyze(STREAM_INPUT_FILE, STREAM_ANALYZE_FILE_DIO, STREAM_ANALYZE_FILE_HARVEST, self.settings.inputSampleRate)
2023-02-15 01:18:05 +03:00
except Exception as e:
print("recordIO exception", e)
2023-01-08 10:18:20 +03:00
elif key in self.settings.floatData:
setattr(self.settings, key, float(val))
elif key in self.settings.strData:
setattr(self.settings, key, str(val))
2023-01-08 03:45:58 +03:00
else:
2023-01-08 10:18:20 +03:00
print(f"{key} is not mutalbe variable!")
2023-01-10 18:59:09 +03:00
return self.get_info()
2023-01-08 10:18:20 +03:00
def _generate_strength(self, dataLength: int):
2023-01-07 14:07:39 +03:00
if self.unpackedData_length != dataLength or \
self.currentCrossFadeOffsetRate != self.settings.crossFadeOffsetRate or \
self.currentCrossFadeEndRate != self.settings.crossFadeEndRate or \
self.currentCrossFadeOverlapSize != self.settings.crossFadeOverlapSize:
self.unpackedData_length = dataLength
2023-01-10 18:59:09 +03:00
self.currentCrossFadeOffsetRate = self.settings.crossFadeOffsetRate
self.currentCrossFadeEndRate = self.settings.crossFadeEndRate
self.currentCrossFadeOverlapSize = self.settings.crossFadeOverlapSize
2023-01-11 19:05:38 +03:00
overlapSize = min(self.settings.crossFadeOverlapSize, self.unpackedData_length)
2023-01-11 19:05:38 +03:00
cf_offset = int(overlapSize * self.settings.crossFadeOffsetRate)
2023-01-28 09:56:56 +03:00
cf_end = int(overlapSize * self.settings.crossFadeEndRate)
2023-01-04 20:28:36 +03:00
cf_range = cf_end - cf_offset
percent = np.arange(cf_range) / cf_range
2023-01-28 09:56:56 +03:00
np_prev_strength = np.cos(percent * 0.5 * np.pi) ** 2
np_cur_strength = np.cos((1 - percent) * 0.5 * np.pi) ** 2
2023-01-04 20:28:36 +03:00
2023-01-11 19:05:38 +03:00
self.np_prev_strength = np.concatenate([np.ones(cf_offset), np_prev_strength, np.zeros(overlapSize - cf_offset - len(np_prev_strength))])
self.np_cur_strength = np.concatenate([np.zeros(cf_offset), np_cur_strength, np.ones(overlapSize - cf_offset - len(np_cur_strength))])
2023-01-04 20:28:36 +03:00
print("Generated Strengths")
2023-01-28 09:56:56 +03:00
2023-01-04 20:28:36 +03:00
# ひとつ前の結果とサイズが変わるため、記録は消去する。
if hasattr(self, 'np_prev_audio1') == True:
delattr(self, "np_prev_audio1")
2023-01-04 20:28:36 +03:00
2023-01-28 09:56:56 +03:00
def _generate_input(self, unpackedData: any, convertSize: int):
2023-01-08 03:22:22 +03:00
# 今回変換するデータをテンソルとして整形する
2023-01-28 09:56:56 +03:00
audio = torch.FloatTensor(unpackedData.astype(np.float32)) # float32でtensorfを作成
audio_norm = audio / self.hps.data.max_wav_value # normalize
audio_norm = audio_norm.unsqueeze(0) # unsqueeze
self.audio_buffer = torch.cat([self.audio_buffer, audio_norm], axis=1) # 過去のデータに連結
2023-02-12 06:25:57 +03:00
# audio_norm = self.audio_buffer[:, -(convertSize + 1280 * 2):] # 変換対象の部分だけ抽出
audio_norm = self.audio_buffer[:, -(convertSize):] # 変換対象の部分だけ抽出
2023-01-08 03:22:22 +03:00
self.audio_buffer = audio_norm
2023-02-10 18:59:44 +03:00
# TBD: numpy <--> pytorch変換が行ったり来たりしているが、まずは動かすことを最優先。
2023-02-12 06:25:57 +03:00
audio_norm_np = audio_norm.squeeze().numpy().astype(np.float64)
2023-02-14 23:02:51 +03:00
if self.settings.f0Detector == "dio":
_f0, _time = pw.dio(audio_norm_np, self.hps.data.sampling_rate, frame_period=5.5)
f0 = pw.stonemask(audio_norm_np, _f0, _time, self.hps.data.sampling_rate)
else:
f0, t = pw.harvest(audio_norm_np, self.hps.data.sampling_rate, frame_period=5.5, f0_floor=71.0, f0_ceil=1000.0)
2023-02-10 18:59:44 +03:00
f0 = convert_continuos_f0(f0, int(audio_norm_np.shape[0] / self.hps.data.hop_length))
f0 = torch.from_numpy(f0.astype(np.float32))
2023-01-08 03:22:22 +03:00
spec = spectrogram_torch(audio_norm, self.hps.data.filter_length,
2023-01-28 09:56:56 +03:00
self.hps.data.sampling_rate, self.hps.data.hop_length, self.hps.data.win_length,
center=False)
2023-02-10 18:59:44 +03:00
# dispose_stft_specs = 2
# spec = spec[:, dispose_stft_specs:-dispose_stft_specs]
# f0 = f0[dispose_stft_specs:-dispose_stft_specs]
2023-01-08 03:22:22 +03:00
spec = torch.squeeze(spec, 0)
2023-01-08 10:18:20 +03:00
sid = torch.LongTensor([int(self.settings.srcId)])
2023-01-08 03:22:22 +03:00
2023-02-10 18:59:44 +03:00
# data = (self.text_norm, spec, audio_norm, sid)
# data = TextAudioSpeakerCollate()([data])
data = TextAudioSpeakerCollate(
sample_rate=self.hps.data.sampling_rate,
hop_size=self.hps.data.hop_length,
2023-02-12 06:25:57 +03:00
f0_factor=self.settings.f0Factor
2023-02-10 18:59:44 +03:00
)([(spec, sid, f0)])
2023-02-20 22:07:43 +03:00
return data
2023-01-04 20:28:36 +03:00
def _onnx_inference(self, data):
2023-01-08 14:28:57 +03:00
if hasattr(self, "onnx_session") == False or self.onnx_session == None:
print("[Voice Changer] No ONNX session.")
return np.zeros(1).astype(np.int16)
2023-02-21 03:17:59 +03:00
spec, spec_lengths, sid_src, sin, d = data
2023-01-08 14:28:57 +03:00
sid_tgt1 = torch.LongTensor([self.settings.dstId])
audio1 = self.onnx_session.run(
["audio"],
{
"specs": spec.numpy(),
"lengths": spec_lengths.numpy(),
2023-02-21 03:17:59 +03:00
"sin": sin.numpy(),
"d0": d[0][:1].numpy(),
"d1": d[1][:1].numpy(),
"d2": d[2][:1].numpy(),
"d3": d[3][:1].numpy(),
2023-01-08 14:28:57 +03:00
"sid_src": sid_src.numpy(),
"sid_tgt": sid_tgt1.numpy()
2023-01-28 09:56:56 +03:00
})[0][0, 0] * self.hps.data.max_wav_value
return audio1
2023-02-21 03:17:59 +03:00
def _pyTorch_inference(self, data):
2023-01-28 09:56:56 +03:00
if hasattr(self, "net_g") == False or self.net_g == None:
2023-01-08 14:28:57 +03:00
print("[Voice Changer] No pyTorch session.")
return np.zeros(1).astype(np.int16)
2023-01-08 11:58:27 +03:00
if self.settings.gpu < 0 or self.gpu_num == 0:
dev = torch.device("cpu")
2023-01-08 11:58:27 +03:00
else:
dev = torch.device("cuda", index=self.settings.gpu)
with torch.no_grad():
spec, spec_lengths, sid_src, sin, d = data
spec = spec.to(dev)
spec_lengths = spec_lengths.to(dev)
sid_src = sid_src.to(dev)
sin = sin.to(dev)
d = tuple([d[:1].to(dev) for d in d])
sid_target = torch.LongTensor([self.settings.dstId]).to(dev)
audio1 = self.net_g.to(dev).voice_conversion(spec, spec_lengths, sin, d, sid_src, sid_target)[0, 0].data * self.hps.data.max_wav_value
result = audio1.float().cpu().numpy()
2023-01-08 11:58:27 +03:00
return result
def on_request(self, unpackedData: any):
2023-02-19 22:49:34 +03:00
2023-02-20 22:07:43 +03:00
with Timer("pre-process") as t:
if self.settings.inputSampleRate != 24000:
unpackedData = resampy.resample(unpackedData, 48000, 24000)
convertSize = unpackedData.shape[0] + min(self.settings.crossFadeOverlapSize, unpackedData.shape[0])
# print(convertSize, unpackedData.shape[0])
if convertSize < 8192:
convertSize = 8192
if convertSize % 128 != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
convertSize = convertSize + (128 - (convertSize % 128))
self._generate_strength(unpackedData.shape[0])
2023-02-20 22:07:43 +03:00
data = self._generate_input(unpackedData, convertSize)
preprocess_time = t.secs
with Timer("main-process") as t:
try:
if self.settings.framework == "ONNX":
audio = self._onnx_inference(data)
# result = self.voiceChanger._onnx_inference(data, unpackedData.shape[0])
2023-02-20 22:07:43 +03:00
else:
audio = self._pyTorch_inference(data)
# result = self.voiceChanger._pyTorch_inference(data, unpackedData.shape[0])
2023-02-20 22:07:43 +03:00
inputSize = unpackedData.shape[0]
if hasattr(self, 'np_prev_audio1') == True:
np.set_printoptions(threshold=10000)
overlapSize = min(self.settings.crossFadeOverlapSize, inputSize)
prev_overlap = self.np_prev_audio1[-1 * overlapSize:]
cur_overlap = audio[-1 * (inputSize + overlapSize):-1 * inputSize]
# print(prev_overlap.shape, self.np_prev_strength.shape, cur_overlap.shape, self.np_cur_strength.shape)
# print(">>>>>>>>>>>", -1 * (inputSize + overlapSize), -1 * inputSize, self.np_prev_audio1.shape, overlapSize)
powered_prev = prev_overlap * self.np_prev_strength
powered_cur = cur_overlap * self.np_cur_strength
powered_result = powered_prev + powered_cur
cur = audio[-1 * inputSize:-1 * overlapSize]
result = np.concatenate([powered_result, cur], axis=0)
else:
result = np.zeros(1).astype(np.int16)
self.np_prev_audio1 = audio
2023-02-20 22:07:43 +03:00
except Exception as e:
print("VC PROCESSING!!!! EXCEPTION!!!", e)
print(traceback.format_exc())
if hasattr(self, "np_prev_audio1"):
del self.np_prev_audio1
2023-03-01 16:33:51 +03:00
return np.zeros(1).astype(np.int16), [0, 0, 0]
2023-02-20 22:07:43 +03:00
mainprocess_time = t.secs
with Timer("post-process") as t:
result = result.astype(np.int16)
# print("on_request result size:",result.shape)
if self.settings.recordIO == 1:
# self.stream_in.write(unpackedData.astype(np.int16).tobytes())
# self.stream_out.write(result.tobytes())
self.ioRecorder.writeInput(unpackedData.astype(np.int16).tobytes())
self.ioRecorder.writeOutput(result.tobytes())
2023-02-20 22:07:43 +03:00
if self.settings.inputSampleRate != 24000:
result = resampy.resample(result, 24000, 48000).astype(np.int16)
postprocess_time = t.secs
perf = [preprocess_time, mainprocess_time, postprocess_time]
return result, perf
##############
class Timer(object):
def __init__(self, title: str):
self.title = title
def __enter__(self):
self.start = time.time()
return self
def __exit__(self, *args):
self.end = time.time()
self.secs = self.end - self.start
self.msecs = self.secs * 1000 # millisecs