2023-03-08 03:48:50 +03:00
|
|
|
from const import TMP_DIR, getModelType
|
2022-12-31 10:08:14 +03:00
|
|
|
import torch
|
2023-01-28 09:56:56 +03:00
|
|
|
import os
|
|
|
|
import traceback
|
2022-12-31 10:08:14 +03:00
|
|
|
import numpy as np
|
2023-01-08 10:18:20 +03:00
|
|
|
from dataclasses import dataclass, asdict
|
2023-02-18 14:53:15 +03:00
|
|
|
import resampy
|
2023-01-14 00:44:30 +03:00
|
|
|
|
2023-02-10 18:59:44 +03:00
|
|
|
|
2023-03-07 16:30:48 +03:00
|
|
|
from voice_changer.IORecorder import IORecorder
|
|
|
|
from voice_changer.IOAnalyzer import IOAnalyzer
|
|
|
|
|
2023-03-07 05:49:06 +03:00
|
|
|
|
2023-02-20 22:07:43 +03:00
|
|
|
import time
|
2023-03-10 19:56:10 +03:00
|
|
|
import librosa
|
2023-01-28 09:56:56 +03:00
|
|
|
providers = ['OpenVINOExecutionProvider', "CUDAExecutionProvider", "DmlExecutionProvider", "CPUExecutionProvider"]
|
|
|
|
|
2023-03-07 16:30:48 +03:00
|
|
|
STREAM_INPUT_FILE = os.path.join(TMP_DIR, "in.wav")
|
|
|
|
STREAM_OUTPUT_FILE = os.path.join(TMP_DIR, "out.wav")
|
|
|
|
STREAM_ANALYZE_FILE_DIO = os.path.join(TMP_DIR, "analyze-dio.png")
|
|
|
|
STREAM_ANALYZE_FILE_HARVEST = os.path.join(TMP_DIR, "analyze-harvest.png")
|
2023-02-12 06:25:57 +03:00
|
|
|
|
|
|
|
|
2023-01-08 10:18:20 +03:00
|
|
|
@dataclass
|
|
|
|
class VocieChangerSettings():
|
2023-02-21 00:03:37 +03:00
|
|
|
inputSampleRate: int = 24000 # 48000 or 24000
|
2023-02-19 04:12:25 +03:00
|
|
|
|
2023-01-28 09:56:56 +03:00
|
|
|
crossFadeOffsetRate: float = 0.1
|
|
|
|
crossFadeEndRate: float = 0.9
|
2023-02-19 00:25:22 +03:00
|
|
|
crossFadeOverlapSize: int = 4096
|
2023-02-19 04:12:25 +03:00
|
|
|
|
2023-02-20 01:14:05 +03:00
|
|
|
recordIO: int = 0 # 0:off, 1:on
|
2023-02-10 18:59:44 +03:00
|
|
|
|
2023-01-08 10:18:20 +03:00
|
|
|
# ↓mutableな物だけ列挙
|
2023-03-07 18:38:09 +03:00
|
|
|
intData = ["inputSampleRate", "crossFadeOverlapSize", "recordIO"]
|
|
|
|
floatData = ["crossFadeOffsetRate", "crossFadeEndRate"]
|
|
|
|
strData = []
|
2023-01-08 10:18:20 +03:00
|
|
|
|
2023-01-28 09:56:56 +03:00
|
|
|
|
2022-12-31 10:08:14 +03:00
|
|
|
class VoiceChanger():
|
2023-01-08 10:18:20 +03:00
|
|
|
|
2023-01-29 03:42:45 +03:00
|
|
|
def __init__(self):
|
2023-01-08 10:18:20 +03:00
|
|
|
# 初期化
|
2023-01-29 03:42:45 +03:00
|
|
|
self.settings = VocieChangerSettings()
|
2023-01-28 09:56:56 +03:00
|
|
|
self.unpackedData_length = 0
|
2023-01-10 16:49:16 +03:00
|
|
|
self.onnx_session = None
|
2023-01-28 09:56:56 +03:00
|
|
|
self.currentCrossFadeOffsetRate = 0
|
|
|
|
self.currentCrossFadeEndRate = 0
|
2023-02-19 00:25:22 +03:00
|
|
|
self.currentCrossFadeOverlapSize = 0
|
2023-01-28 09:56:56 +03:00
|
|
|
|
2023-03-08 03:48:50 +03:00
|
|
|
modelType = getModelType()
|
|
|
|
print("[VoiceChanger] activate model type:", modelType)
|
|
|
|
if modelType == "MMVCv15":
|
|
|
|
from voice_changer.MMVCv15.MMVCv15 import MMVCv15
|
2023-03-07 19:46:08 +03:00
|
|
|
self.voiceChanger = MMVCv15()
|
2023-03-10 19:56:10 +03:00
|
|
|
elif modelType == "MMVCv13":
|
|
|
|
from voice_changer.MMVCv13.MMVCv13 import MMVCv13
|
|
|
|
self.voiceChanger = MMVCv13()
|
|
|
|
elif modelType == "so-vits-svc-40v2":
|
|
|
|
from voice_changer.SoVitsSvc40v2.SoVitsSvc40v2 import SoVitsSvc40v2
|
|
|
|
self.voiceChanger = SoVitsSvc40v2()
|
|
|
|
|
2023-03-07 19:46:08 +03:00
|
|
|
else:
|
2023-03-08 03:48:50 +03:00
|
|
|
from voice_changer.MMVCv13.MMVCv13 import MMVCv13
|
2023-03-07 19:46:08 +03:00
|
|
|
self.voiceChanger = MMVCv13()
|
2023-03-07 05:49:06 +03:00
|
|
|
|
2022-12-31 10:08:14 +03:00
|
|
|
self.gpu_num = torch.cuda.device_count()
|
2023-03-10 20:31:10 +03:00
|
|
|
self.prev_audio = np.zeros(4096)
|
2023-01-07 18:25:21 +03:00
|
|
|
self.mps_enabled = getattr(torch.backends, "mps", None) is not None and torch.backends.mps.is_available()
|
2022-12-31 10:08:14 +03:00
|
|
|
|
2023-01-04 20:28:36 +03:00
|
|
|
print(f"VoiceChanger Initialized (GPU_NUM:{self.gpu_num}, mps_enabled:{self.mps_enabled})")
|
|
|
|
|
2023-01-28 09:56:56 +03:00
|
|
|
def loadModel(self, config: str, pyTorch_model_file: str = None, onnx_model_file: str = None):
|
2023-03-07 18:38:09 +03:00
|
|
|
return self.voiceChanger.loadModel(config, pyTorch_model_file, onnx_model_file)
|
2022-12-31 10:08:14 +03:00
|
|
|
|
2023-01-07 18:25:21 +03:00
|
|
|
def get_info(self):
|
2023-01-08 10:18:20 +03:00
|
|
|
data = asdict(self.settings)
|
2023-03-07 18:38:09 +03:00
|
|
|
data.update(self.voiceChanger.get_info())
|
2023-01-08 10:18:20 +03:00
|
|
|
return data
|
|
|
|
|
2023-01-28 09:56:56 +03:00
|
|
|
def update_setteings(self, key: str, val: any):
|
2023-03-07 18:38:09 +03:00
|
|
|
if key in self.settings.intData:
|
2023-01-08 10:18:20 +03:00
|
|
|
setattr(self.settings, key, int(val))
|
2023-01-08 15:19:44 +03:00
|
|
|
if key == "crossFadeOffsetRate" or key == "crossFadeEndRate":
|
|
|
|
self.unpackedData_length = 0
|
2023-02-14 23:02:51 +03:00
|
|
|
if key == "recordIO" and val == 1:
|
2023-03-07 16:30:48 +03:00
|
|
|
if hasattr(self, "ioRecorder"):
|
|
|
|
self.ioRecorder.close()
|
|
|
|
self.ioRecorder = IORecorder(STREAM_INPUT_FILE, STREAM_OUTPUT_FILE, self.settings.inputSampleRate)
|
2023-02-15 01:18:05 +03:00
|
|
|
if key == "recordIO" and val == 0:
|
2023-03-07 16:30:48 +03:00
|
|
|
if hasattr(self, "ioRecorder"):
|
|
|
|
self.ioRecorder.close()
|
2023-02-16 21:03:21 +03:00
|
|
|
pass
|
|
|
|
if key == "recordIO" and val == 2:
|
2023-03-07 16:30:48 +03:00
|
|
|
if hasattr(self, "ioRecorder"):
|
|
|
|
self.ioRecorder.close()
|
|
|
|
|
|
|
|
if hasattr(self, "ioAnalyzer") == False:
|
|
|
|
self.ioAnalyzer = IOAnalyzer()
|
|
|
|
|
2023-02-15 01:18:05 +03:00
|
|
|
try:
|
2023-03-07 16:30:48 +03:00
|
|
|
self.ioAnalyzer.analyze(STREAM_INPUT_FILE, STREAM_ANALYZE_FILE_DIO, STREAM_ANALYZE_FILE_HARVEST, self.settings.inputSampleRate)
|
2023-02-15 01:18:05 +03:00
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
print("recordIO exception", e)
|
2023-01-08 10:18:20 +03:00
|
|
|
elif key in self.settings.floatData:
|
|
|
|
setattr(self.settings, key, float(val))
|
|
|
|
elif key in self.settings.strData:
|
|
|
|
setattr(self.settings, key, str(val))
|
2023-01-08 03:45:58 +03:00
|
|
|
else:
|
2023-03-07 18:38:09 +03:00
|
|
|
ret = self.voiceChanger.update_setteings(key, val)
|
|
|
|
if ret == False:
|
|
|
|
print(f"{key} is not mutalbe variable or unknown variable!")
|
2023-01-08 10:18:20 +03:00
|
|
|
|
2023-01-10 18:59:09 +03:00
|
|
|
return self.get_info()
|
2023-01-08 10:18:20 +03:00
|
|
|
|
2023-03-07 14:55:10 +03:00
|
|
|
def _generate_strength(self, dataLength: int):
|
2023-01-07 14:07:39 +03:00
|
|
|
|
2023-03-07 05:49:06 +03:00
|
|
|
if self.unpackedData_length != dataLength or \
|
2023-02-19 00:25:22 +03:00
|
|
|
self.currentCrossFadeOffsetRate != self.settings.crossFadeOffsetRate or \
|
|
|
|
self.currentCrossFadeEndRate != self.settings.crossFadeEndRate or \
|
|
|
|
self.currentCrossFadeOverlapSize != self.settings.crossFadeOverlapSize:
|
|
|
|
|
2023-03-07 05:49:06 +03:00
|
|
|
self.unpackedData_length = dataLength
|
2023-01-10 18:59:09 +03:00
|
|
|
self.currentCrossFadeOffsetRate = self.settings.crossFadeOffsetRate
|
|
|
|
self.currentCrossFadeEndRate = self.settings.crossFadeEndRate
|
2023-02-19 00:25:22 +03:00
|
|
|
self.currentCrossFadeOverlapSize = self.settings.crossFadeOverlapSize
|
2023-01-11 19:05:38 +03:00
|
|
|
|
2023-02-19 00:25:22 +03:00
|
|
|
overlapSize = min(self.settings.crossFadeOverlapSize, self.unpackedData_length)
|
2023-01-11 19:05:38 +03:00
|
|
|
cf_offset = int(overlapSize * self.settings.crossFadeOffsetRate)
|
2023-01-28 09:56:56 +03:00
|
|
|
cf_end = int(overlapSize * self.settings.crossFadeEndRate)
|
2023-01-04 20:28:36 +03:00
|
|
|
cf_range = cf_end - cf_offset
|
|
|
|
percent = np.arange(cf_range) / cf_range
|
|
|
|
|
2023-01-28 09:56:56 +03:00
|
|
|
np_prev_strength = np.cos(percent * 0.5 * np.pi) ** 2
|
|
|
|
np_cur_strength = np.cos((1 - percent) * 0.5 * np.pi) ** 2
|
2023-01-04 20:28:36 +03:00
|
|
|
|
2023-01-11 19:05:38 +03:00
|
|
|
self.np_prev_strength = np.concatenate([np.ones(cf_offset), np_prev_strength, np.zeros(overlapSize - cf_offset - len(np_prev_strength))])
|
|
|
|
self.np_cur_strength = np.concatenate([np.zeros(cf_offset), np_cur_strength, np.ones(overlapSize - cf_offset - len(np_cur_strength))])
|
2023-01-04 20:28:36 +03:00
|
|
|
|
|
|
|
print("Generated Strengths")
|
2023-01-28 09:56:56 +03:00
|
|
|
|
2023-01-04 20:28:36 +03:00
|
|
|
# ひとつ前の結果とサイズが変わるため、記録は消去する。
|
2023-03-07 15:46:43 +03:00
|
|
|
if hasattr(self, 'np_prev_audio1') == True:
|
|
|
|
delattr(self, "np_prev_audio1")
|
2023-01-04 20:28:36 +03:00
|
|
|
|
2023-03-07 17:14:14 +03:00
|
|
|
# receivedData: tuple of short
|
|
|
|
def on_request(self, receivedData: any):
|
2023-03-10 19:56:10 +03:00
|
|
|
processing_sampling_rate = self.voiceChanger.get_processing_sampling_rate()
|
2023-03-10 21:59:03 +03:00
|
|
|
print_convert_processing(f"------------ Convert processing.... ------------")
|
2023-03-07 18:38:09 +03:00
|
|
|
# 前処理
|
2023-02-20 22:07:43 +03:00
|
|
|
with Timer("pre-process") as t:
|
2023-03-07 18:38:09 +03:00
|
|
|
|
2023-03-10 19:56:10 +03:00
|
|
|
if self.settings.inputSampleRate != processing_sampling_rate:
|
|
|
|
newData = resampy.resample(receivedData, self.settings.inputSampleRate, processing_sampling_rate)
|
2023-03-07 17:14:14 +03:00
|
|
|
else:
|
|
|
|
newData = receivedData
|
2023-03-07 18:38:09 +03:00
|
|
|
|
|
|
|
inputSize = newData.shape[0]
|
|
|
|
convertSize = inputSize + min(self.settings.crossFadeOverlapSize, inputSize)
|
2023-03-10 21:59:03 +03:00
|
|
|
print_convert_processing(
|
|
|
|
f" Input data size of {receivedData.shape[0]}/{self.settings.inputSampleRate}hz {inputSize}/{processing_sampling_rate}hz")
|
2023-03-10 19:56:10 +03:00
|
|
|
|
2023-02-20 22:07:43 +03:00
|
|
|
if convertSize < 8192:
|
|
|
|
convertSize = 8192
|
2023-03-10 20:31:10 +03:00
|
|
|
# if convertSize % 128 != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
|
|
|
|
# convertSize = convertSize + (128 - (convertSize % 128))
|
|
|
|
if convertSize % 512 != 0: # モデルの出力のホップサイズで切り捨てが発生するので補う。
|
|
|
|
convertSize = convertSize + (512 - (convertSize % 512))
|
2023-03-10 19:56:10 +03:00
|
|
|
|
|
|
|
overlapSize = min(self.settings.crossFadeOverlapSize, inputSize)
|
|
|
|
cropRange = (-1 * (inputSize + overlapSize), -1 * overlapSize)
|
|
|
|
|
2023-03-10 21:59:03 +03:00
|
|
|
print_convert_processing(f" Convert input data size of {convertSize}")
|
|
|
|
print_convert_processing(f" overlap:{overlapSize}, cropRange:{cropRange}")
|
|
|
|
|
2023-03-07 18:38:09 +03:00
|
|
|
self._generate_strength(inputSize)
|
2023-03-10 19:56:10 +03:00
|
|
|
data = self.voiceChanger.generate_input(newData, convertSize, cropRange)
|
2023-02-20 22:07:43 +03:00
|
|
|
preprocess_time = t.secs
|
|
|
|
|
2023-03-07 18:38:09 +03:00
|
|
|
# 変換処理
|
2023-02-20 22:07:43 +03:00
|
|
|
with Timer("main-process") as t:
|
|
|
|
try:
|
2023-03-07 18:38:09 +03:00
|
|
|
# Inference
|
|
|
|
audio = self.voiceChanger.inference(data)
|
2023-03-07 14:55:10 +03:00
|
|
|
|
|
|
|
if hasattr(self, 'np_prev_audio1') == True:
|
|
|
|
np.set_printoptions(threshold=10000)
|
|
|
|
prev_overlap = self.np_prev_audio1[-1 * overlapSize:]
|
2023-03-10 20:31:10 +03:00
|
|
|
cur_overlap_start = -1 * (inputSize + overlapSize)
|
|
|
|
cur_overlap_end = -1 * inputSize
|
|
|
|
cur_overlap = audio[cur_overlap_start:cur_overlap_end]
|
|
|
|
# cur_overlap = audio[-1 * (inputSize + overlapSize):-1 * inputSize]
|
2023-03-07 14:55:10 +03:00
|
|
|
powered_prev = prev_overlap * self.np_prev_strength
|
2023-03-10 21:59:03 +03:00
|
|
|
print_convert_processing(
|
|
|
|
f" audio:{audio.shape}, cur_overlap:{cur_overlap.shape}, self.np_cur_strength:{self.np_cur_strength.shape}")
|
|
|
|
print_convert_processing(f" cur_overlap_strt:{cur_overlap_start}, cur_overlap_end{cur_overlap_end}")
|
2023-03-07 14:55:10 +03:00
|
|
|
powered_cur = cur_overlap * self.np_cur_strength
|
|
|
|
powered_result = powered_prev + powered_cur
|
|
|
|
|
|
|
|
cur = audio[-1 * inputSize:-1 * overlapSize]
|
|
|
|
result = np.concatenate([powered_result, cur], axis=0)
|
2023-03-10 21:59:03 +03:00
|
|
|
print_convert_processing(
|
|
|
|
f" overlap:{overlapSize}, current:{cur.shape[0]}, result:{result.shape[0]}... result should be same as input")
|
|
|
|
if cur.shape[0] != result.shape[0]:
|
|
|
|
print_convert_processing(f" current and result should be same as input")
|
2023-03-07 18:38:09 +03:00
|
|
|
|
2023-03-07 14:55:10 +03:00
|
|
|
else:
|
2023-03-10 20:31:10 +03:00
|
|
|
result = np.zeros(4096).astype(np.int16)
|
2023-03-07 14:55:10 +03:00
|
|
|
self.np_prev_audio1 = audio
|
|
|
|
|
2023-02-20 22:07:43 +03:00
|
|
|
except Exception as e:
|
|
|
|
print("VC PROCESSING!!!! EXCEPTION!!!", e)
|
|
|
|
print(traceback.format_exc())
|
|
|
|
if hasattr(self, "np_prev_audio1"):
|
|
|
|
del self.np_prev_audio1
|
2023-03-01 16:33:51 +03:00
|
|
|
return np.zeros(1).astype(np.int16), [0, 0, 0]
|
2023-02-20 22:07:43 +03:00
|
|
|
mainprocess_time = t.secs
|
|
|
|
|
2023-03-07 18:38:09 +03:00
|
|
|
# 後処理
|
2023-02-20 22:07:43 +03:00
|
|
|
with Timer("post-process") as t:
|
|
|
|
result = result.astype(np.int16)
|
2023-03-10 19:56:10 +03:00
|
|
|
if self.settings.inputSampleRate != processing_sampling_rate:
|
|
|
|
outputData = resampy.resample(result, processing_sampling_rate, self.settings.inputSampleRate).astype(np.int16)
|
|
|
|
else:
|
|
|
|
outputData = result
|
|
|
|
|
2023-03-10 21:59:03 +03:00
|
|
|
print_convert_processing(
|
|
|
|
f" Output data size of {result.shape[0]}/{processing_sampling_rate}hz {outputData.shape[0]}/{self.settings.inputSampleRate}hz")
|
2023-03-07 18:38:09 +03:00
|
|
|
|
2023-02-20 22:07:43 +03:00
|
|
|
if self.settings.recordIO == 1:
|
2023-03-07 18:38:09 +03:00
|
|
|
self.ioRecorder.writeInput(receivedData)
|
2023-03-10 19:56:10 +03:00
|
|
|
self.ioRecorder.writeOutput(outputData.tobytes())
|
|
|
|
|
|
|
|
if receivedData.shape[0] != outputData.shape[0]:
|
|
|
|
outputData = pad_array(outputData, receivedData.shape[0])
|
2023-03-10 21:59:03 +03:00
|
|
|
print_convert_processing(
|
2023-03-10 19:56:10 +03:00
|
|
|
f" Padded!, Output data size of {result.shape[0]}/{processing_sampling_rate}hz {outputData.shape[0]}/{self.settings.inputSampleRate}hz")
|
2023-02-20 22:07:43 +03:00
|
|
|
|
|
|
|
postprocess_time = t.secs
|
|
|
|
|
2023-03-10 21:59:03 +03:00
|
|
|
print_convert_processing(f" [fin] Input/Output size:{receivedData.shape[0]},{outputData.shape[0]}")
|
2023-02-20 22:07:43 +03:00
|
|
|
perf = [preprocess_time, mainprocess_time, postprocess_time]
|
2023-03-10 19:56:10 +03:00
|
|
|
return outputData, perf
|
2023-02-20 22:07:43 +03:00
|
|
|
|
|
|
|
|
2023-03-10 21:59:03 +03:00
|
|
|
##############
|
|
|
|
PRINT_CONVERT_PROCESSING = False
|
|
|
|
# PRINT_CONVERT_PROCESSING = True
|
|
|
|
|
|
|
|
|
|
|
|
def print_convert_processing(mess: str):
|
|
|
|
if PRINT_CONVERT_PROCESSING == True:
|
|
|
|
print(mess)
|
|
|
|
|
|
|
|
|
2023-03-10 19:56:10 +03:00
|
|
|
def pad_array(arr, target_length):
|
|
|
|
current_length = arr.shape[0]
|
|
|
|
if current_length >= target_length:
|
|
|
|
return arr
|
|
|
|
else:
|
|
|
|
pad_width = target_length - current_length
|
|
|
|
pad_left = pad_width // 2
|
|
|
|
pad_right = pad_width - pad_left
|
|
|
|
padded_arr = np.pad(arr, (pad_left, pad_right), 'constant', constant_values=(0, 0))
|
|
|
|
return padded_arr
|
|
|
|
|
|
|
|
|
2023-02-20 22:07:43 +03:00
|
|
|
class Timer(object):
|
|
|
|
def __init__(self, title: str):
|
|
|
|
self.title = title
|
|
|
|
|
|
|
|
def __enter__(self):
|
|
|
|
self.start = time.time()
|
|
|
|
return self
|
|
|
|
|
|
|
|
def __exit__(self, *args):
|
|
|
|
self.end = time.time()
|
|
|
|
self.secs = self.end - self.start
|
|
|
|
self.msecs = self.secs * 1000 # millisecs
|